نتایج جستجو برای: l_k biharmonic
تعداد نتایج: 1348 فیلتر نتایج به سال:
An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity typ...
هدف اصلی این رساله بررسی وجود جواب برای معادله های بیضوی غیر موضعی زیرمی باشد: {?(-l_k u??(?j(x,u)+??k(x,u)) in ? ,&@ u=0 in ?? ,) ? (1) {?(?(-?)?^s u=f(x,u) in ? , @ u=0 in r^n ?? , )? (2)
Using three critical points theorems, we prove the existence of at least three solutions for a quasilinear biharmonic equation.
let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...
s of IWANASP, October 22 – 24, 2015, Lagos, Portugal A FAST FOURIER–GALERKIN METHOD SOLVING A BOUNDARY INTEGRAL EQUATION FOR THE BIHARMONIC EQUATION
In this paper we review fourth-order approximations of the biharmonic operator in one, two and three dimensions. In addition, we describe recent developments on second and fourth order finite difference approximations of the two dimensional Navier-Stokes equations. The schemes are compact both for the biharmonic and the Laplacian operators. For the convective term the fourth order scheme invoke...
where τ( f ) is the tension field of f and dvg is the volume form of M. It is clear that E2( f |Ω) = 0 on any compact domain if and only if f is a harmonic map. Thus E2 provides a measure for the extent to which f fails to be harmonic. If f is a critical point of (1.1) over every compact domain, then f is called a biharmonic map or 2-harmonic maps. Jiang [10] proved that f is biharmonic if and ...
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
In this paper, we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity. Using some variational arguments and exploiting the symmetries of the problem, we establish a multiplicity result giving two nontrivial solutions.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید