نتایج جستجو برای: lipschitz function
تعداد نتایج: 1218581 فیلتر نتایج به سال:
Rademacher theorem states that every Lipschitz function on the Euclidean space is differentiable almost everywhere, where “almost everywhere” refers to the Lebesgue measure. Our main result is an extension of this theorem where the Lebesgue measure is replaced by an arbitrary measure μ. In particular we show that the differentiability properties of Lipschitz functions at μ-almost every point ar...
Lipschitz condition is a natural notion of function regularity in this context, and the norm dual to the mixed Lipschitz space is a natural distance between measures. In this paper, we consider the tensor product of spaces equipped with tree metrics and give effective formulas for the mixed Lipschitz norm and its dual. We also show that these norms behave well when approximating an arbitrary me...
We examine the action of the maximal operator on Lipschitz and Hölder functions in the context of homogeneous spaces. Boundedness results are proven for spaces satisfying an annular decay property and counterexamples are given for some other spaces. The annular decay property is defined and investigated.
When A is a Lipschitz function, the L boundedness of %A is well understood and several proofs of it have been produced (cf. [C, CJS, CMM, DJ, M]). If A is a C -smooth function, then the local L boundedness of ̂ A is also well understood (cf. [FJR]). However, if A is a smooth, not necessarily Lipschitz function, the question of global L boundedness of ί?A has not been settled. In [KS], we observe...
In this paper, we consider a class of nonsmooth, nonconvex constrained optimization problems where the objective function may be not Lipschitz continuous and the feasible set is a general closed convex set. Using the theory of the generalized directional derivative and the Clarke tangent cone, we derive a first order necessary optimality condition for local minimizers of the problem, and define...
and Applied Analysis 3 Definition 2.2 see 16 . Let ψ : R → R be a locally Lipschitz function, then ψ◦ u;v denotes Clarke’s generalized directional derivative of ψ at u ∈ R in the direction v and is defined as ψ◦ u;v lim sup y→u t→ 0 ψ ( y tv ) − ψ(y) t . 2.4 Clarke’s generalized gradient of ψ at u is denoted by ∂ψ u and is defined as ∂ψ u { ξ ∈ R | ψ◦ u;v ≥ 〈ξ, v〉, ∀v ∈ Rn}. 2.5 Let f : R → R b...
our aim in this paper is to prove an analog of younis's theorem on the image under the jacobi transform of a class functions satisfying a generalized dini-lipschitz condition in the space $mathrm{l}_{(alpha,beta)}^{p}(mathbb{r}^{+})$, $(1< pleq 2)$. it is a version of titchmarsh's theorem on the description of the image under the fourier transform of a class of functions satisfying the dini-lip...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید