نتایج جستجو برای: local feature descriptor
تعداد نتایج: 755443 فیلتر نتایج به سال:
Combining the feature sets that are invariant to global as well as to local variations of face images would be an efficient approach to construct an optimal face recognition system. Thus, identification and combination of complementary feature sets has become an active topic of research in recent days. In this paper, a combination of two useful methods, i.e. Zernike Moments (ZMs) and Scale Inva...
For many years, various local descriptors that are insensitive to geometric changes such as viewpoint, rotation, and scale changes, have been attracting attention due to their promising performance. However, most existing local descriptors including the SIFT (Scale Invariant Feature Transform) are based on luminance information rather than color information thereby resulting in instability to p...
Image feature matching is to seek, localize and identify the similarities across the images. The matched local features between different images can indicate the similarities of their content. Resilience of image feature matching to large view point changes is challenging for a lot of applications such as 3D object reconstruction, object recognition and navigation, etc, which need accurate and ...
This paper presents new image descriptors based on color, texture, shape, and wavelets for object and scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor, which produces three new color images, is proposed for encoding both color and texture information of an image. The 3D-LBP images together with the original color image then undergo the Haar wa...
Shapes and texture image recognition usage is an essential branch of pattern recognition. It is made up of techniques that aim at extracting information from images via human knowledge and works. Local Binary Pattern (LBP) ensures encoding global and local information and scaling invariance by introducing a look-up table to reflect the uniformity structure of an object. However, edge direction ...
Automatic facial expression recognition is a challenging problem in computer vision, and has gained significant importance in the applications of human-computer interactions. The vital component of any successful expression recognition system is an effective facial representation from face images. In this paper, we have derived an appearance-based feature descriptor, the Local Directional Patte...
3D model retrieval techniques can be classified as histogram-based, view-based and graph-based approaches. We propose a hybrid shape descriptor which combines the global and local radial distance features by utilizing the histogram-based and view-based approaches respectively. We define an area-weighted global radial distance with respect to the center of the bounding sphere of the model and en...
Human action recognition received many interest in the computer vision community. Most of the existing methods focus on either construct robust descriptor from the temporal domain, or computational method to exploit the discriminative power of the descriptor. In this paper we explore the idea of using local action attributes to form an action descriptor, where an action is no longer characteriz...
In this paper, we proposed a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of ...
In this work, we present the novel Inter-GIP Distances (IGD) feature and its integration into the Gestalt Interest Points (GIP) image descriptor. With the ongoing growth of visual data, efficient image descriptor methods are becoming more and more important. Several local point-based description methods have been defined in the past decades. Accuracy and descriptor size are important factors wh...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید