نتایج جستجو برای: magnetic fe3o4
تعداد نتایج: 341598 فیلتر نتایج به سال:
Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two-step wet chemical approach using NaBH4 as reducing agent for formation of Au in ethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chit...
The nano-Fe3O4 particles were prepared by hydrothermal method. Cellulose-based magnetic Fe3O4 was prepared by adding cellulose solution dissolved in sodium hydroxide / thiourea / urea system. The basic protease was used as the catalyst and glutaraldehyde was used as the crosslinking agent, The production of magnetic recyclable immobilized enzyme can greatly reduce the cost of hydrolysis of slud...
This paper highlights the relation between the shape of iron oxide (Fe3O4) particles and their magnetic sensing ability. We synthesized Fe3O4 nanocubes and nanospheres having tunable sizes via solvothermal and thermal decomposition synthesis reactions, respectively, to obtain samples in which the volumes and body diagonals/diameters were equivalent. Vibrating sample magnetometry (VSM) data show...
A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine,...
Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized na...
Pt-loaded multi-walled carbon nanotubes (Pt/MCNTs) and magnetically responsive Pt-Fe3O4/MCNT catalysts were prepared by a stepwise loading of preformed Pt and Fe3O4 nanoparticles onto multi-walled carbon nanotubes (MCNTs). The structure, composition, and magnetism of the catalysts were characterized by X-ray diffraction (XRD), TEM, H2-O2 titration, inductively coupling plasma-atomic emission sp...
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 mon...
Multifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal thera...
Atomic interdiffusion between FePt and Fe3O4 nanoparticles in annealed FePt-based nanocomposite magnets has been studied by means of structural and magnetic characterizations. The results show that the Fe3Pt phase is formed during the annealing only when the mass ratio x of Fe3O4/FePt is larger than 1/20. When x 1/20, only FePt single phase is formed. It is interesting to find that the coercivi...
We present an in situ experimental investigation of the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm as a function of oxygen exposure (0-80 L), using X-ray photoemission electron microscopy. The X-ray absorption spectroscopy results show that, irrespective of size and magnetic state, the early stages of the Fe nanoparticle oxidation occu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید