نتایج جستجو برای: menger probabilistic metric space
تعداد نتایج: 620104 فیلتر نتایج به سال:
binayak et al in [1] proved a fixed point of generalized kannan type-mappings in generalized menger spaces. in this paper we extend gen- eralized kannan-type mappings in generalized fuzzy metric spaces. then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. finally we present an example of our main result.
We discuss 1-Ahlfors-regular connected sets in a metric space. We prove that such a set is ‘flat’ on most scales and locations. We give a quantitative version of this. This, together with work of I. Hahlomaa, gives a characterization of 1-Ahlfors regular subsets of 1-Ahlfors-regular curves in a metric space, generalizing in a way the Analyst’s (Geometric) Traveling Salesman theorems by P. Jones...
In this paper the existence and approximation of a unique common fixed point of two families of weakly compatible self-maps on a complete metric space are investigated. An example is presented to show that our results for the mappings considered satisfying non-linear contractive type conditions are genuine generalizations of the recent result for metric spaces [B. Singh, S. Jain, A fixed point ...
We present geometric proofs of Menger’s results on isometrically embedding metric spaces in Euclidean space. In 1928, Karl Menger [6] published the proof of a beautiful characterization of those metric spaces that are isometrically embeddable in the ndimensional Euclidean space E. While a visitor at Harvard University and the Rice Institute in Houston during the 1930-31 academic year, Menger ga...
In [16] K. Menger proposed the probabilistic concept of distance by replacing the number d(p, q), as the distance between points p, q, by a distribution function Fp,q. This idea led to development of probabilistic analysis [3], [11] [18]. In this paper, generalized probabilistic 2-normed spaces are studied and topological properties of these spaces are given. As an example, a space of random va...
In this paper, we prove that every F ∗ space (i.e., Hausdorff topological vector space satisfying the first countable axiom) can be characterized by means of its “standard generating family of pseudo-norms”. By using the standard generating family of pseudo-norms P, the concepts of P-bounded set and γ-maxpseudo-norm-subadditive operator in F ∗ space are introduced. The uniform boundedness princ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید