نتایج جستجو برای: method kvadrachr differential equations
تعداد نتایج: 2002114 فیلتر نتایج به سال:
in this paper we intend to offer new numerical methods to solve the second-order fuzzy abel-volterraintegro-differential equations under the generalized $h$-differentiability. the existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.
This paper presents the numerical solution for a class of fractional differential equations. The fractional derivatives are described in the Caputo cite{1} sense. We developed a reproducing kernel method (RKM) to solve fractional differential equations in reproducing kernel Hilbert space. This method cannot be used directly to solve these equations, so an equivalent transformation is made by u...
in this paper, we apply the differential transform (dt) method for finding approximate solution of the system of linear and nonlinear volterra integro-differential equations with variable coefficients, especially of higher order. we also obtain an error bound for the approximate solution. since, in this method the coefficients of taylor series expansion of solution is obtained by a recurrence r...
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
comparative study on solving fractional differential equations via shifted jacobi collocation method
in this paper, operational matrices of riemann-liouville fractional integration and caputo fractional differentiation for shifted jacobi polynomials are considered. using the given initial conditions, we transform the fractional differential equation (fde) into a modified fractional differential equation with zero initial conditions. next, all the existing functions in modified differential equ...
the first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. this method can be applied to non integrable equations as well as to integrable ones. in this paper, the first integral method is used to construct exact solutions of the 2d ginzburg-landau equation.
in this paper, first the properties of one and two-dimensional differential transforms are presented.next, by using the idea of differential transform, we will present a method to find an approximate solution fora volterra integro-partial differential equations. this method can be easily applied to many linear andnonlinear problems and is capable of reducing computational works. in some particu...
approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. in this paper with central difference approximation and newton cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. three...
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
in this paper, we present legendre wavelet method to obtain numerical solution of a singular integro-differential equation. the singularity is assumed to be of the cauchy type. the numerical results obtained by the present method compare favorably with those obtained by various galerkin methods earlier in the literature.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید