نتایج جستجو برای: n hereditary rings n regular rings
تعداد نتایج: 1195530 فیلتر نتایج به سال:
we investigate the classical h.~zassenhaus conjecture for integral group rings of alternating groups $a_9$ and $a_{10}$ of degree $9$ and $10$, respectively. as a consequence of our previous results we confirm the prime graph conjecture for integral group rings of $a_n$ for all $n leq 10$.
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with a vertex set $Rsetminus Z(R)$ and two vertices $a$ and $b$ are adjacent if and only if $ab=ba$. In this paper, we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$. It is shown that, $Gamma(R)$ is the disjoint ...
Inspired by a recent paper due to José Luis García, we revisit the attempt of Daniel Simson construct counterexample pure semisimplicity conjecture. Using compactness, show that existence such would readily follow from very certain (countable set of) hereditary artinian rings finite representation type. The is then proved be equivalent special types embeddings, which call tight, division into s...
let $r$ be a ring with unity. the undirected nilpotent graph of $r$, denoted by $gamma_n(r)$, is a graph with vertex set ~$z_n(r)^* = {0neq x in r | xy in n(r) for some y in r^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in n(r)$, or equivalently, $yx in n(r)$, where $n(r)$ denoted the nilpotent elements of $r$. recently, it has been proved that if $r$ is a left ar...
A ringR is called generalized right Baer if for any non-empty subset S of R, the right annihilator rR(S ) is generated by an idempotent for some positive integer n. Generalized Baer rings are special cases of generalized PP rings and a generalization of Baer rings. In this paper, many properties of these rings are studied and some characterizations of von Neumann regular rings and PP rings are ...
we exhibit an explicit construction for the second cohomology group $h^2(l, a)$ for a lie ring $l$ and a trivial $l$-module $a$. we show how the elements of $h^2(l, a)$ correspond one-to-one to the equivalence classes of central extensions of $l$ by $a$, where $a$ now is considered as an abelian lie ring. for a finite lie ring $l$ we also show that $h^2(l, c^*) cong m(l)$...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید