نتایج جستجو برای: neural network algorithm pso
تعداد نتایج: 1463843 فیلتر نتایج به سال:
In this paper, we investigate the performance of global vs. local techniques applied to the training of neural network classifiers for solving medical diagnosis problems. The presented methodology of the investigation involves systematic and exhaustive evaluation of the classifier performance over a neural network architecture space and with respect to training depth for a particular problem. I...
As accurate Short Term Load Forecasting (STLF) is very important for improvement of the management performance of the electric industry, various short term loads forecasting methods have been developed. This paper addresses an issue of the optimal design of a neural network based short term load forecaster. A new hybrid evolutionary algorithm combining the Particle Swarm Optimization (PSO) algo...
Stock market prediction is the act of trying to determine the future value of a company stock or other financial instrument traded on a financial exchange. The successful prediction of a stock's future price will maximize investor’s gains. This paper proposes a machine learning model to predict stock market price. The proposed algorithm integrates Particle swarm optimization (PSO) and least squ...
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
In the present study Artificial Neural Network (ANN) has been optimized using a hybrid algorithm of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The hybrid GA-PSO algorithm has been used to improve the estimation of electricity demand of the state of Tamil Nadu in India. The ANN-GA-PSO model uses gross domestic product (GSDP); electricity consumption per capita; income growth r...
Radial Basis Function Neural Networks (RBFNNs) have been widely used for classification and function approximation tasks. Hence, it is worthy to try improving and developing new learning algorithms for RBFNNs in order to get better results. This paper presents a new learning method for RBFNNs. An improved algorithm for center adjustment of RBFNNs and a novel algorithm for width determination ha...
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
Usually it is difficult to solve the control problem of a complex nonlinear system. In this paper, we present an effective control method based on adaptive PID neural network and particle swarm optimization (PSO) algorithm. PSO algorithm is introduced to initialize the neural network for improving the convergent speed and avoiding weights getting trapped into local optima. To adapt the initiall...
This article reports on the use of the particle swarm optimization (PSO) algorithm in the synthesis of the planar interdigital capacitor (IDC). The PSO algorithm is used to optimize the geometry parameters of the IDC in order to obtain a certain capacitance value. The capacitance value of the IDC is evaluated using an artificial neural network (ANN) model with the geometry parameters of the IDC...
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید