نتایج جستجو برای: rbf neural network

تعداد نتایج: 834870  

2011
André Eugênio Lazzaretti Fábio Alessandro Guerra Hugo Vieira Neto Leandro dos Santos

The identification of non-linear systems by artificial neural networks has been successfully applied in many applications. In this context, the radial basis function neural network (RBF-NN) is a powerful approach for non-linear system identification. An RBF neural network has an input layer, a hidden layer and an output layer. The neurons in the hidden layer contain Gaussian transfer functions ...

2002
C. W. Dawson C. Harpham Y. Chen

While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP), and the radial basis function network (RBF). Using six-hourly rainfall-runoff data for the River Yangt...

2010
J. Padmavathi

In this article an attempt is made to study the applicability of a general purpose, supervised feed forward neural network with one hidden layer, namely. Radial Basis Function (RBF) neural network. It uses relatively smaller number of locally tuned units and is adaptive in nature. RBFs are suitable for pattern recognition and classification. Performance of the RBF neural network was also compar...

2010
Iulian-Constantin VIZITIU Petrică CIOTÎRNAE Teofil OROIAN Adrian RADU Florin POPESCU Cristian AVRAM

The efficiency of pattern recognition (PR) systems using RBF neural networks to implement their recognition function, depends a lot by the training algorithms of these neural networks and especially, by the specific techniques (e.g., supervised, clustering techniques etc.) used for RBF center positioning. Having as starting point the basic property of genetic algorithms (GA) to represent global...

1998
Po-Rong Chang Wen-Hao Yang

This paper investigates the application of a radial basis function (RBF) neural network to the prediction of field strength based on topographical and morphographical data. The RBF neural network is a two-layer localized receptive field network whose output nodes from a combination of radial activation functions computed by the hidden layer nodes. Appropriate centers and connection weights in t...

2006
Yuehui Chen Lizhi Peng Ajith Abraham

Hierarchical neural networks consist of multiple neural networks assembled in the form of an acyclic graph. The purpose of this study is to identify the hierarchical radial basis function neural networks and select important input features for each sub-RBF neural network automatically. Based on the pre-defined instruction/operator sets, a hierarchical RBF neural network can be created and evolv...

Dams have been always considered as the important infrastructures and their critical values are counted. Hence, evaluation and avoidance of dams’ destruction have a specific importance. Seepage occurrence in dams is an inevitable phenomenon. Despite all the progress in geotechnical engineering, up to now, seepage problem is the main conflict which occurs in dams. This study tried to estimate se...

2013
Shobhit Verma Hitesh Gupta

Image Enhancement is for Improving Visibility and can also be used for different task, It is also important to provide a better representation for further automated image processing such as image analysis, detection, segmentation, recognition and data hiding which can be gain by image enhancement technique there are various method are available for the enhancement like histogram equalization et...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید