نتایج جستجو برای: riesz mean
تعداد نتایج: 589884 فیلتر نتایج به سال:
This paper systematically studies finite rank dimension groups, as well as finite dimensional ordered real vector spaces with Riesz interpolation. We provide an explicit description and classification of finite rank dimension groups, in the following sense. We show that for each n, there are (up to isomorphism) finitely many ordered real vector spaces of dimension n that have Riesz interpolatio...
The Balian–Low Theorem is a strong form of the uncertainty principle for Gabor systems which form orthonormal or Riesz bases for L(R). In this paper we investigate the Balian–Low Theorem in the setting of Schauder bases. We prove that new weak versions of the Balian–Low Theorem hold for Gabor Schauder bases, but we constructively demonstrate that several variants of the BLT can fail for Gabor S...
Recently, Mohiuddine and Alghamdi introduced the notion of lacunary statistical convergence in a locally solid Riesz space and established some results related to this concept. In this paper, some inclusion relations between the sets of statistically convergent and lacunary statistically convergent sequences are established and extensions of a decomposition theorem, a Tauberian theorem to the l...
On the Euclidean space, it is well known that the Riesz transform has also a bounded extension L(M) → L(M ;TM) for any p ∈]1,∞[. However, this is not a general feature of the Riesz transform on complete Riemannian manifolds, as the matter of fact, on the connected sum of two copies of the Euclidean space R , the Riesz transform is not bounded on L for any p ∈ [n,∞[∩]2,∞[ ([9, 7]). It is of inte...
Riesz potentials also called Riesz fractional derivatives and their Hilbert transforms are computed for the Korteweg-de Vries soliton. They are expressed in terms of the full-range Hurwitz Zeta functions ζ s, a and ζ− s, a . It is proved that these Riesz potentials and their Hilbert transforms are linearly independent solutions of a Sturm-Liouville problem. Various new properties are establishe...
in this paper, we first discuss about canonical dual of g-frameλp = {λip ∈ b(h, hi) : i ∈ i}, where λ = {λi ∈ b(h, hi) :i ∈ i} is a g-frame for a hilbert space h and p is the orthogonalprojection from h onto a closed subspace m. next, we provethat, if λ = {λi ∈ b(h, hi) : i ∈ i} and θ = {θi ∈ b(k, hi) :i ∈ i} be respective g-frames for non zero hilbert spaces hand k, and λ and θ are unitarily e...
Abstract In this paper we study the almost everywhere convergence of the expansions related to the self-adjoint extension of the Laplace operator. The sufficient conditions for summability is obtained. For the orders of Riesz means, which greater than critical index N−1 2 we established the estimation for maximal operator of the Riesz means. Note that when order α of Riesz means is less than cr...
This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.
The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...
The Barankin bound is generalized to the vector case in the mean square error sense. Necessary and sufficient conditions are obtained to achieve the lower bound. To obtain the result, a simple finite dimensional real vector valued generalization of the Riesz representation theorem for Hilbert spaces is given. The bound has the form of a linear matrix inequality where the covariances of any unbi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید