نتایج جستجو برای: scalar curvature

تعداد نتایج: 84734  

A. Behzadi M. Farahmandy Motlagh,

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

2003
HARISH SESHADRI

We show that the minimal hypersurface method of Schoen and Yau can be used for the “quantitative” study of positive scalar curvature. More precisely, we show that if a manifold admits a metric g with sg ≥ |T | or sg ≥ |W |, where sg is the scalar curvature of of g, T any 2-tensor on M and W the Weyl tensor of g, then any closed orientable stable minimal (totally geodesic in the second case) hyp...

2001
Wenxiong Chen Congming Li WENXIONG CHEN CONGMING LI

on S for n ≥ 3. In the case R is rotationally symmetric, the well-known Kazdan-Warner condition implies that a necessary condition for (1) to have a solution is: R > 0 somewhere and R′(r) changes signs. Then, (a) is this a sufficient condition? (b) If not, what are the necessary and sufficient conditions? These have been open problems for decades. In Chen & Li, 1995, we gave question (a) a nega...

2015
Shawn W. Walker

1 Major Errata 1. A serious typographical error was made in the proofs with respect to the vector curvature symbol: κ. The scalar (summed) curvature should be denoted by κ; the vector (summed) curvature should be denoted by κ := κν, where ν is the normal vector of the surface. Unfortunately, the bold was omitted in several places in the final version of the book, especially Ch. 6 and Ch. 7. In ...

2005
Shiu-Yuen Cheng Shing-Tung Yau

Let M be a complete two-dimensional surface immersed into the three-dimensional Euclidean space. Then a classical theorem of Hilbert says that when the curvature of M is a non-zero constant, M must be the sphere. On the other hand, when the curvature of M is zero, a theorem of Har tman-Nirenberg [4] says that M must be a plane or a cylinder. These two theorems complete the classification of com...

2002
ANDREW D. HWANG

Examples of Kähler metrics of constant scalar curvature are relatively scarce. Over the past two decades, several workers in geometry and physics have used symmetry reduction to construct complete Kähler metrics of constant scalar curvature by ODE methods. One fruitful idea—the “Calabi ansatz”—is to begin with an Hermitian line bundle p : (L, h)→ (M, gM ) over a Kähler manifold, and to search f...

2004
VLADISLAV CHERNYSH

In this paper it is shown that the space of metrics of positive scalar curvature on a manifold is, when nonempty, homotopy equivalent to a space of metrics of positive scalar curvature that restrict to a fixed metric near a given submanifold of codimension greater or equal than 3. Our main tool is a parameterized version of the Gromov-Lawson construction, which was used to show that the existen...

2005
JOEL FINE

Let π : X → B be a holomorphic submersion between compact Kähler manifolds of any dimensions, whose fibres and base have no non-zero holomorphic vector fields and whose fibres admit constant scalar curvature Kähler metrics. This article gives a sufficient topological condition for the existence of a constant scalar curvature Kähler metric on X. The condition involves the CM-line bundle—a certai...

2011
WEIYONG HE In

We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [8, 9], which involves the geometry of infinite-dimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimens...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید