نتایج جستجو برای: semi regularization
تعداد نتایج: 162227 فیلتر نتایج به سال:
Semi-supervised learning is more powerful than supervised learning by using both labeled and unlabeled data. In particular, the manifold regularization framework, together with kernel methods, leads to the Laplacian SVM (LapSVM) that has demonstrated state-of-the-art performance. However, the LapSVM solution typically involves kernel expansions of all the labeled and unlabeled examples, and is ...
Kernel canonical correlation analysis (KCCA) is a dimensionality reduction technique for paired data. By finding directions that maximize correlation, KCCA learns representations that are more closely tied to the underlying semantics of the data rather than noise. However, meaningful directions are not only those that have high correlation to another modality, but also those that capture the ma...
We consider the semi-supervised learning problem, where a decision rule is to be learned from labeled and unlabeled data. In this framework, we motivate minimum entropy regularization, which enables to incorporate unlabeled data in the standard supervised learning. Our approach includes other approaches to the semi-supervised problem as particular or limiting cases. A series of experiments illu...
In this letter, we introduce a semi-supervised manifold regularization framework for human pose estimation. We utilize the unlabeled data to compensate for the complexities in the input space and model the underlying manifold by a nearest neighbor graph. We argue that the optimal graph is a subgraph of the k nearest neighbors (k-NN) graph. Then, we estimate distances in the output space to appr...
Pedestrian counting plays an important role in public safety and intelligent transportation. Most pedestrian counting algorithms based on supervised learning require much labeling work and rarely exploit the topological information of unlabelled data in a video. In this paper, we propose a SemiSupervised Elastic Net (SSEN) regressionmethod by utilizing sequential information between unlabelled ...
We consider the general problem of utilizing both labeled and unlabeled data to improve data representation performance. A new semi-supervised learning framework is proposed by combing manifold regularization and data representation methods such as Non negative matrix factorization and sparse coding. We adopt unsupervised data representation methods as the learning machines because they do not ...
Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) using both the labeled and unlabeled data. It first constructs a single Laplacian graph over the whole dataset for representing the manifold structure, and then enforces the smoothness constraint over such graph by a Laplacian regularizer in learning. However, the smoothness over such a single La...
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
We propose the simple and efficient method of semi-supervised learning for deep neural networks. Basically, the proposed network is trained in a supervised fashion with labeled and unlabeled data simultaneously. For unlabeled data, Pseudo-Labels, just picking up the class which has the maximum predicted probability, are used as if they were true labels. This is in effect equivalent to Entropy R...
Although semi-supervised learning has been an active area of research, its use in deployed applications is still relatively rare because the methods are often difficult to implement, fragile in tuning, or lacking in scalability. This paper presents expectation regularization, a semi-supervised learning method for exponential family parametric models that augments the traditional conditional lab...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید