نتایج جستجو برای: signless laplacian estrada index
تعداد نتایج: 409161 فیلتر نتایج به سال:
A connected graph is called a c-cyclic graph if it contains n vertices and n + c − 1 edges. Let C(n, k, c) denote the class of connected c-cyclic graphs with n vertices and k pendant vertices. Recently, the unique extremal graph, which has greatest (respectively, signless) Laplacian spectral radius, in C(n, k, c) has been determined for 0 ≤ c ≤ 3, k ≥ 1 and n ≥ 2c + k + 1. In this paper, the un...
In this paper we define extended corona and extended neighborhood corona of two graphs G1 and G2, which are denoted by G1 • G2 and G1 ∗ G2 respectively. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum. As applications, we give methods to construct infinite families of integral graphs, Laplacian integral graphs and expander graphs from known ones.
A connected graph is called a c-cyclic graph if it contains n vertices and n + c − 1 edges. Let C(n, k, c) denote the class of connected c-cyclic graphs with n vertices and k pendant vertices. Recently, the unique extremal graph, which has greatest (respectively, signless) Laplacian spectral radius, in C(n, k, c) has been determined for 0 ≤ c ≤ 3, k ≥ 1 and n ≥ 2c + k + 1. In this paper, the un...
Let G = (V,E) be a graph without loops and multiple edges. Let n and m be the number of vertices and edges of G, respectively. Such a graph will be referred to as an (n,m)-graph. For v ∈ V (G), let d(v) be the degree of v. In this paper, we are concerned only with undirected simple graphs (loops and multiple edges are not allowed). Let G be a graph with n vertices and the adjacency matrix A(G)....
In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.
In this paper, we define duplication corona, duplication neighborhood corona and duplication edge corona of two graphs. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian. As an application, our results enable us to construct infinitely many pairs of cospectral graphs and also integral graphs.
In this paper, we study the signless Laplacian spectral radius of bicyclic graphs with given number of pendant vertices and characterize the extremal graphs.
Given a connected graph G, the Randić index R(G) is the sum of 1 √ d(u)d(v) over all edges {u, v} of G, where d(u) and d(v) are the degree of vertices u and v respectively. Let q(G) be the largest eigenvalue of the singless Laplacian matrix of G and n = |V (G)|. Hansen and Lucas (2010) made the following conjecture:
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید