نتایج جستجو برای: stochastic volatility
تعداد نتایج: 141876 فیلتر نتایج به سال:
State-of-the-art stochastic volatility models generate a volatility smirk that explains why out-of-the-money index puts have high prices relative to the Black-Scholes benchmark. These models also adequately explain how the volatility smirk moves up and down in response to changes in risk. However, the data indicate that the slope and the level of the smirk uctuate largely independently. Whil...
An efficient Bayesian estimation using a Markov chain Monte Carlo method is proposed in the case of a multivariate stochastic volatility model as a natural extension of the univariate stochastic volatility model with leverage and heavy-tailed errors. Note that we further incorporate cross-leverage effects among stock returns. Our method is based on a multi-move sampler that samples a block of l...
The aim of this paper is to investigate the properties of stochastic volatility models, and to discuss to what extent, and with regard to which models, properties of the classical exponential Brownian motion model carry over to a stochastic volatility setting. The properties of the classical model of interest include the fact that the discounted stock price is positive for all t but converges t...
In this paper we implement an algorithm for the optimal selection of a portfolio of stock and risk-free asset under the stochastic volatility (SV) model with discrete observation and trading. The SV model extends the classical Black-Scholes model by allowing the noise intensity (volatility) to be random. The main assumption is that the portfolio manager has discrete access to the continuous-tim...
In this paper, we show that the recent integration of statistical models with deep recurrent neural networks provides a new way of formulating volatility (the degree of variation of time series) models that have been widely used in time series analysis and prediction in finance. The model comprises a pair of complementary stochastic recurrent neural networks: the generative network models the j...
This paper derives asymptotic expansion formulas for option prices and implied volatilities as well as the density of the underlying asset price in multi-dimensional stochastic volatility models. In particular, the integration-byparts formula in Malliavin calculus and the push-down of Malliavin weights are effectively applied. We provide an expansion formula for generalized Wiener functionals a...
This paper extends the stochastic volatility with leverage model, where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. The novelty of the paper is in modeling the unknown distribution with an infinite ordered mixture of bivariate normals with mean zero, but whose mixture probabilities and covari...
We consider general regime switching stochastic volatility models where both the asset and the volatility dynamics depend on the values of a Markov jump process. Due to the stochastic volatility and the Markov regime switching, this financial market is thus incomplete and perfect pricing and hedging of options are not possible. Thus, we are interested in finding formulae to solve the problem of...
Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order structure of the volatility, the log returns, as well as their “squares” are discussed in detail. M...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید