نتایج جستجو برای: strongly nonexpansive mappings
تعداد نتایج: 240259 فیلتر نتایج به سال:
F(T) ̸ = 0. As an important generalization of nonexpansive mappings, the class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [1] in 1972, who proved that if K is a nonempty, closed, and convex subset of a real uniformly convex Banach space and T : K → K is an asymptotically nonexpansive mapping, then T has a fixed point. Since then, iterative techniques for approximat...
We prove that an implicit iterative process with errors converges weakly and strongly to a common fixed point of a finite family of asymptotically quasi-nonexpansive mappings on unbounded sets in a uniformly convex Banach space. Our results generalize and improve upon, among others, the corresponding recent results of Sun (2003) in the following two different directions: (i) domain of the mappi...
T h e homotopic invariance of fixed points of set-valued contractions and nonexpansive mappings is studied. As application, nonlinear alternative principles are given. A LeraySchauder alternative and an antipodal theorem for set-valued nonexpansive mappings are also included.
a definition of two jointly asymptotically nonexpansive mappings s and t on uniformly convex banach space e is studied to approximate common fixed points of two such mappings through weak and strong convergence of an ishikawa type iteration scheme generated by s and t on a bounded closed and convex subset of e. as a consequence of the notion of two jointly asymptotically nonexpansive maps, we c...
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
and Applied Analysis 3 It is easy to see that a quasi-nonexpansive mapping is an asymptotically quasi-nonexpansive mapping with the sequence {1}. T is said to be asymptotically nonexpansive in the intermediate sense if and only if it is continuous, and the following inequality holds: lim sup n→∞ sup x,y∈C (∥ ∥Tx − Tny∥∥ − ∥∥x − y∥∥) ≤ 0. 2.6 T is said to be asymptotically quasi-nonexpansive in ...
for all x, y ∈ C and each n ≥ 1. The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [1] as an important generalization of nonexpansive mappings. It was proved in [1] that if C is a nonempty bounded closed convex subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive self mapping on C, then F (T ) is nonempty closed convex subset o...
We introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed point for nonexpansive semigroup, and the set of solutions of the quasi-variational inclusion problem with multivalued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some str...
In this paper, we proposed a new two-step iteration scheme of hybrid mixed type for two asymptotically nonexpansive self mappings and two total asymptotically nonexpansive non-self mappings and establish some weak convergence theorems for mentioned scheme and mappings in the setting of uniformly convex Banach spaces. Our results extend and generalize several results from the current existing li...
In this paper, we first show that the iteration {xn} defined by xn+1 = P ((1−αn)xn +αnTP [βnTxn + (1− βn)xn]) converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with err...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید