and Applied Analysis 3 We now define two maps S1 and S2 : Ω → C t0,∞ , R as follows: S1x t ⎧⎨ ⎩ a t x t − τ , t ≥ t1, S1x t1 , t0 ≤ t ≤ t1, S2x t ⎪⎨ ⎪⎩ − 1 n − 1 ! ∫∞ t s − t n−1p s f x s − σ ds, t ≥ t1, S2x t1 v t − v t1 , t0 ≤ t ≤ t1. 2.5 We will show that for any x, y ∈ Ω we have S1x S2y ∈ Ω. For every x, y ∈ Ω and t ≥ t1 we obtain S1x t ( S2y ) t ≤ a t v t − τ − 1 n − 1 ! ∫∞ t s − t n−1p s ...