Let $T=\bigl(\begin{smallmatrix}A&0\U\&B\end{smallmatrix}\bigr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings $U$ is $(B, A)$-bimodule. We prove: (1) If $U\_{A}$ ${B}U$ have finite flat dimensions, then left $T$-module $\bigl(\begin{smallmatrix}M\_1\ M\_2\end{smallmatrix}\bigr){\varphi^{M}}$ Ding projective if only $M\_1$ $M\_2/{\operatorname{im}(\varphi^{M})}$ the morphism $...