For a ring R, call a class C of R-modules (pure-) mono-correct if for any M,N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ' N . Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M , the class σ[M ] of all M -subgenerated modules is mono-correct if and only if M is semisimple, and the class of all weakly M -injective modules ...