نتایج جستجو برای: well posed common fixed point problem
تعداد نتایج: 3215529 فیلتر نتایج به سال:
let $c$ be a nonempty closed convex subset of a real hilbert space $h$. let ${s_n}$ and ${t_n}$ be sequences of nonexpansive self-mappings of $c$, where one of them is a strongly nonexpansive sequence. k. aoyama and y. kimura introduced the iteration process $x_{n+1}=beta_nx_n+(1-beta_n)s_n(alpha_nu+(1-alpha_n)t_nx_n)$ for finding the common fixed point of ${s_n}$ and ${t_n}$, where $uin c$ is ...
The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for three self mappings in $b$-metric spaces. Next, we obtain cone $b$-metric version of these results by using a scalarization function. Our results extend and generalize several well known comparable results in the existing literature.
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
In this article, we deal with iterative methods for approximation of fixed points and their applications. We first discuss fixed point theorems for a nonexpansive mapping or a family of nonexpansive mappings. In particular, we state a fixed point theorem which answered affirmatively a problem posed during the Conference on Fixed Point Theory and Applications held at CIRM, Marseille-Luminy, 1989...
We generalize the notions of Levitin-Polyak well-posedness to an equilibrium problem with both abstract and functional constraints. We introduce several types of generalized Levitin-Polyak well-posedness. Some metric characterizations and sufficient conditions for these types of wellposedness are obtained. Some relations among these types of well-posedness are also established under some suitab...
The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید