نتایج جستجو برای: zno nanorods
تعداد نتایج: 24925 فیلتر نتایج به سال:
A zinc oxide (ZnO) nanorod based surface acoustic wave (SAW) sensor has been developed and investigated towards hydrogen (H2) gas. The ZnO nanorods were deposited onto a layered ZnO/64° YX LiNbO3 substrate using a liquid solution method. Micro-characterization results revealed that the diameters of ZnO nanorods are around 100 and 40 nm on LiNbO3 and Au (metallization for electrodes), respective...
1-D ZnO nanorods with different aspect ratios were synthesized by a one-step, hydrothermal method. The ZnO nanorods grow along the [0001] direction to form single crystals. The experimental results reveal that the growth of polar inorganic crystals is sensitive to the reaction solvents.
ZnO nanorods have been successfully synthesized by a simple microwave-assisted solution phase approach. Hydrazine hydrate has been used as a mineralizer instead of sodium hydroxide. XRD and FESEM have been used to characterize the product. The FESEM images show that the diameter of the nanorods fall in the range of about 25–75 nm and length in the range of 500–1,500 nm with an aspect ratio of a...
Several important synthetic parameters such as precursor concentration, rate of evaporation and reaction time are found to determine the growth of ZnO nanostructures. These reaction parameters can be tailored and tuned to produce a variety of nanostructures ranging from nanoparticles, nanorods and nanospheres. The nanorods are structurally uniform made up of crystallographically oriented attach...
A low-cost and efficient photocatalytic reactor for environmental treatment and green technology was presented. ZnO nanorods firmly growing on polycarbonate optical disk substrate are generally perpendicular to the substrate as the immobilized photocatalyst of the spinning disk reactor. The photocatalytic efficiency and durability of the ZnO nanorods are effectively demonstrated.
Variable-aspect-ratio (length/diameter), one-dimensional (1-D) ZnO nanostructures (nanorods and nanowires) were prepared in alcohol/water solution by reacting a Zn2+ precursor with an organic weak base, tetramethylammonium hydroxide (Me4NOH). The effect of the experimental parameters (temperature, base concentration, reaction time, and water content) on nucleation, growth, and the final morphol...
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfull...
Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. G...
Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation
We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density ver...
Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید