We consider the Ginzburg-Landau equation, @ t u = @ 2 x u+u?ujuj 2 , with complex amplitude u(x; t). We first analyze the phenomenon of phase slips as a consequence of the local shape of u. We next prove a global theorem about evolution from an Eckhaus unstable state, all the way to the limiting stable finite state, for periodic perturbations of Eckhaus unstable periodic initial data. Equipped ...