نتایج جستجو برای: a 0
تعداد نتایج: 13610599 فیلتر نتایج به سال:
let $g$ be a finite group and $d_2(g)$ denotes the probability that $[x,y,y]=1$ for randomly chosen elements $x,y$ of $g$. we will obtain lower and upper bounds for $d_2(g)$ in the case where the sets $e_g(x)={yin g:[y,x,x]=1}$ are subgroups of $g$ for all $xin g$. also the given examples illustrate that all the bounds are sharp.
let $g$ be a finite group and $d_2(g)$ denotes the probability that $[x,y,y]=1$ for randomly chosen elements $x,y$ of $g$. we will obtain lower and upper bounds for $d_2(g)$ in the case where the sets $e_g(x)={yin g:[y,x,x]=1}$ are subgroups of $g$ for all $xin g$. also the given examples illustrate that all the bounds are sharp.
فرض کنید a و b ، -c^*جبر باشند و x یک باناخ a-دومدول اساسی باشد و همچنین t:a→b و s:a→x نگاشت های خطی پیوسته باشند که t پوشا است. اگر برای هر a,b∈a a که ab=ba=0 داشته باشیم t(a)t(b)+t(b)t(a)=0, s(a)b+bs(a)+as(b)+s(b)a=0 مطالعه می کنیم که t=ωφ و s=d+? هستند که w در مرکز جبر ضربگر b قرار دارد و ∅:a→b بروریختی جردن می باشد و d:a→x مشتق ...
A normal projective variety X is called Fano if a multiple of the anticanonical Weil divisor, −KX , is an ample Cartier divisor. The importance of Fano varieties is twofold, from one side they give, has predicted by Fano [Fa], examples of non rational varieties having plurigenera and irregularity all zero (cfr [Is]); on the other hand they should be the building block of uniruled variety. Indee...
For a locally compact group G we look at the group algebras C 0 (G) and C * r (G), and we let f ∈ C 0 (G) act on L 2 (G) by the multiplication operator M (f). We show among other things that the following properties are equivalent: 1. G has a compact open subgroup. 2. One of the C *-algebras has a dense multiplier Hopf *-subalg-ebra (which turns out to be unique). 3. There are non-zero elements...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید