نتایج جستجو برای: artificial neural network anns

تعداد نتایج: 1026537  

Journal: :CoRR 2016
Davide Zambrano Sander M. Bohte

Biological neurons communicate with a sparing exchange of pulses – spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on recent insights in neuroscience, we present an Adapting Spiking Neural Network (ASNN) based on adaptive spiking n...

1999
H. G. Claycamp

There are two broadly-defined applications of artificial neural networks (ANNs) in SAR/QSAR modeling. The first is the use of networks as preprocessors to reduce the dimensionality of chemical descriptors for use in statistical or network models. The second is to create classification models for predictive toxicology. This report discusses the use of ANNs as classifiers in SAR/QSAR modeling and...

2017
P. Palanichamy

Received Jun 18, 2017 Revised Nov 27, 2017 Accepted Dec 19, 2017 The artificial neural network used to detect the fault in electrical machines and can increase the function of new entry detection when compared to the conventional method. In proposed artificial neural network has increased the precision and stability of system performance. The time-area vibration signs of a pivoting machine with...

Journal: :CoRR 2015
Keiron O'Shea Ryan Nash

The field of machine learning has taken a dramatic twist in recent times, with the rise of the Artificial Neural Network (ANN). These biologically inspired computational models are able to far exceed the performance of previous forms of artificial intelligence in common machine learning tasks. One of the most impressive forms of ANN architecture is that of the Convolutional Neural Network (CNN)...

2002
Julian D. Olden Donald A. Jackson

With the growth of statistical modeling in the ecological sciences, researchers are using more complex methods, such as artificial neural networks (ANNs), to address problems associated with pattern recognition and prediction. Although in many studies ANNs have been shown to exhibit superior predictive power compared to traditional approaches, they have also been labeled a ‘‘black box’’ because...

G. Ghodrati Amiri, P. Namiranian,

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...

2013
Madhavi H. Nerkar B. E. Kushare

Accurate estimation of parameters during transient and steady state is required for controlling of Induction motor. Artificial neural networks (ANNs) based online identification of induction motor parameters are presented. ANNs such as feed forward network is used to develop an ANN as a memory for remembering the estimated parameters and for computing the parameters during transients. Simulatio...

2015
Yang Liu Jie Yang Yuan Huang Lixiong Xu Siguang Li Man Qi

Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpos...

Hassan Aghabarati, Mohsen Tabrizizadeh

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...

2015
Sang-Hoon Oh Yong-Sun Oh Hiroshi Wakuya

Since artificial neural networks (ANNs) can approximate any function, they have been applied in many fields including hydrology. In hydrology, there are important issues such as flood estimation and predicting rainfall-runoff in a certain area. In this presentation, we briefly introduce a popular feed-forward neural network model, so called “multi-layer perceptron (MLP)”, and review its applica...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید