نتایج جستجو برای: biharmonic curve
تعداد نتایج: 129594 فیلتر نتایج به سال:
s of IWANASP, October 22 – 24, 2015, Lagos, Portugal A FAST FOURIER–GALERKIN METHOD SOLVING A BOUNDARY INTEGRAL EQUATION FOR THE BIHARMONIC EQUATION
In this paper we review fourth-order approximations of the biharmonic operator in one, two and three dimensions. In addition, we describe recent developments on second and fourth order finite difference approximations of the two dimensional Navier-Stokes equations. The schemes are compact both for the biharmonic and the Laplacian operators. For the convective term the fourth order scheme invoke...
where τ( f ) is the tension field of f and dvg is the volume form of M. It is clear that E2( f |Ω) = 0 on any compact domain if and only if f is a harmonic map. Thus E2 provides a measure for the extent to which f fails to be harmonic. If f is a critical point of (1.1) over every compact domain, then f is called a biharmonic map or 2-harmonic maps. Jiang [10] proved that f is biharmonic if and ...
In this paper, we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity. Using some variational arguments and exploiting the symmetries of the problem, we establish a multiplicity result giving two nontrivial solutions.
A. In this paper, by applying the first variation formula of f -bi-energy given in [OND], we study f -biharmonic maps between doubly warped product manifolds M ×(μ,λ) N. Under imposing existence condition concerning proper f -biharmonic maps, we derive f -biharmonicity’s characteristic equations for the inclusion maps: iy0 : (M, g) → (M ×(μ,λ) N, ḡ), ix0 : (N, h) → (M ×(μ,λ) N, ḡ) and th...
In this study, a high accuracy numerical method based on the spectral theory of compact operator for biharmonic eigenvalue equations on a spherical domain is developed. By employing the orthogonal spherical polynomials approximation and the spectral theory of compact operator, the error estimates of approximate eigenvalues and eigenfunctions are provided. By adopting orthogonal spherical base f...
We present a new method of surface generation from prescribed boundaries based on the elliptic partial differential operators. In particular, we focus on the study of the so-called harmonic and biharmonic Bézier surfaces. The main result we report here is that any biharmonic Bézier surface is fully determined by the boundary control points. We compare the new method, by way of practical example...
In this work, we compare different mesh moving techniques for monolithically-coupled fluid-structure interactions in arbitrary Lagrangian–Eulerian coordinates. The mesh movement is realized by solving an additional partial differential equation of harmonic, linear-elastic, or biharmonic type. We examine an implementation of time discretization that is designed with finite differences. Spatial d...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید