نتایج جستجو برای: bimetallic electrocatalyst for oxygen reduction
تعداد نتایج: 10560376 فیلتر نتایج به سال:
Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen ...
Among clean energy transformation devices, fuel cells have gained special attention over the past years; however, advancing appropriate non-valuable metal impetuses to halfway supplant customary Pt/C impetus is still in progress. In this paper, we propose a specific electrocatalyst formula of highly-active Cu species, associated with coated carbon (Cu@C-800), for oxygen reduction reaction (ORR)...
Control of structure and morphology of Pt-based nanomaterials is of great importance for electrochemical energy conversions. In this work, we report an efficient one-step synthesis of bimetallic porous AuPt nanoparticles (PAuPt NPs) in an aqueous solution. The proposed synthesis is performed by a simple stirring treatment of an aqueous reactive mixture including K2PtCl4, HAuCl4, Pluronic F127 a...
Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e- process, while oxygen can be fully reduced to water by a 4 e-/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2-. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both...
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out with noble metals (such as Pt) and metal oxides (such as RuO₂ and MnO₂) as catalysts, respectively. However, these metal-based catalysts often suffer from multiple disadvantages, including high cost, low selectivity, poor stability and detrimental environmental effects. Here, we describe a meso...
The uptake of precious metals from electronic waste is of environmental significance and potential commercial value. A facile bioreductive synthesis is described for Au nanoparticles (ca. 20 nm) supported on N-doped carbon (Au@NC), which was derived from Au/Pycnoporus sanguineus cells. The interface and charge transport between Au and N-doped carbon were confirmed by HRTEM and XPS. Au@NC was em...
Bimetallic metal-organic frameworks are rationally synthesized as templates and employed for porous carbons with retained morphology, high graphitization degree, hierarchical porosity, high surface area, CoNx moiety and uniform N/Co dopant by pyrolysis. The optimized carbon with additional phosphorus dopant exhibits excellent electrocatalytic performance for the oxygen reduction reaction, which...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید