نتایج جستجو برای: caprolactone scaffold
تعداد نتایج: 26001 فیلتر نتایج به سال:
OBJECTIVE Cardiac tissue engineering has been proposed as a treatment to repair impaired hearts. Bioengineered cardiac grafts are created by combining autologous cell transplantation with a degradable scaffold as a temporary extracellular matrix. Here we present a system for engineered myocardium combining cultured cardiomyocytes and a novel biodegradable scaffold with a unique extracellular ma...
The biocompatibility and osteogenic potential of four fibrous scaffolds prepared by electrospinning of poly(ε-caprolactone) (PCL) was studied with MG-63 osteoblast cells. Two different kinds of scaffolds were obtained by adjustment of spinning conditions, which were characterized as nano- or microfibrous. In addition of one nanofibrous, scaffold was made more hydrophilic by blending PCL with Pl...
The functional replacement of tendon represents an unmet clinical need in situations of tendon rupture, tendon grafting, and complex tendon reconstruction, as usually there is a finite source of healthy tendon to use as donors. The microfibrous architecture of tendon is critical to the function of tendon. This study investigates the use of electrospun poly(ɛ-caprolactone) scaffolds as potential...
Tissue engineering of the small intestine remains experimental despite worldwide attempts to develop a functional substitute for short bowel syndrome. Most published studies have reported predominant use of PLLA (poly-L-lactide acid)/PGA (polyglycolic acid) copolymer as the scaffold material, and studies have been limited by in vivo experiments. This lack of progress has inspired a fresh perspe...
Aligned electrospun scaffolds are promising tools for engineering fibrous musculoskeletal tissues, as they reproduce the mechanical anisotropy of these tissues and can direct ordered neo-tissue formation. However, these scaffolds suffer from a slow cellular infiltration rate, likely due in part to their dense fiber packing. We hypothesized that cell ingress could be expedited in scaffolds by in...
Statement of Purpose: Critical sized defects in bone, whether caused by tumor resection, trauma, or implant surgery have presented insurmountable challenges to the current gold standard treatment for bone repair. Tissue engineered scaffolds offer promise in addressing these challenges and have been increasingly sophisticated and multifunctional since their inception about 15 years ago. The prim...
Tissue-engineered heart valves (TEHVs), based on polyglycolic acid (PGA) scaffolds coated with poly-4-hydroxybutyrate (P4HB), have shown promising in vivo results in terms of tissue formation. However, a major drawback of these TEHVs is compaction and retraction of the leaflets, causing regurgitation. To overcome this problem, the aim of this study was to investigate: (a) the use of the slowly ...
We here present the first successful report on combining nanostructured silk and poly(ε-caprolactone) (PCL) with a ceramic scaffold to produce a composite scaffold that is highly porous (porosity ∼85%, pore size ∼500 μm, ∼100% interconnectivity), strong and non-brittle with a surface that resembles extracellular matrix (ECM). The ECM-like surface was developed by self-assembly of nanofibrous st...
Novel therapies are crucially needed for short bowel syndrome. One potential therapy is the production of tissue engineered intestine (TEI). The intestinal environment presents significant challenges to the selection of appropriate material for tissue engineering scaffolds. Our goal was to characterize different scaffold materials to downselect to that best suited for TEI production. To investi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید