نتایج جستجو برای: cathode materials
تعداد نتایج: 447854 فیلتر نتایج به سال:
Lithium-ion batteries offer promising opportunities for novel energy storage systems and future application in hybrid electric vehicles or electric vehicles. Cathode materials with high energy density are required for practical application. Herein, high-voltage LiCoPO4 cathode materials with different shapes and well-developed facets such as nanorods and nanoplates with exposed {010} facets hav...
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na0.66Co x Mn0.66-x Ti0.34O2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting struc...
34 T he materials in anodes and cathodes within a lithium-ion battery affect voltage, capacity, and battery life. When a battery is discharging, the lithium ions move from the anode into the cathode. During the charging process, that movement is reversed. Electrolytes conduct the lithium ions and serve as a carrier between the cathode and the anode when electric currents pass through an externa...
Amorphous iron phosphates are potential cathode materials for sodium ion batteries. The amorphous FePO4 matrix is able to insert/extract sodium ions reversibly without apparent structural degradation, resulting in stable performance during the charge/discharge process. However, the extremely low electronic conductivity of FePO4 itself becomes a formidable obstacle for its application as a high-...
New and improved materials for energy storage are urgently required to make more efficient use of our finite supply of fossil fuels, and to enable the effective use of renewable energy sources. Lithium ion batteries (LIB) are a key resource for mobile energy, and one of the most promising solutions for environment-friendly transportation such as plug-in hybrid electric vehicles (PHEVs). Among t...
Batteries that shuttle multivalent ions such as Mg and Ca ions are promising candidates for achieving higher energy density than available with current Li-ion technology. Finding electrode materials that reversibly store and release these multivalent cations is considered a major challenge for enabling such multivalent battery technology. In this paper, we use recent advances in high-throughput...
After an introduction to lithium insertion compounds and the principles of Li-ion cells, we present a comparative study of the physical and electrochemical properties of positive electrodes used in lithium-ion batteries (LIBs). Electrode materials include three different classes of lattices according to the dimensionality of the Li ion motion in them: olivine, layered transition-metal oxides an...
This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO₂, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi₂MnO₃•(1 - y)LiNi½Mn½O₂ layered-layered integrated materials. The structural, physical, and chemical propert...
Tavorite LiFe(PO4)(OH)0.5F0.5 microspheres with different morphologies were prepared by a facile solvothermal route, and were further investigated as cathode materials for Li-ion batteries. We highly expect that this research can provide a useful fundamental understanding of the shape-dependent electrochemical performance of tavorite electrode materials.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید