نتایج جستجو برای: chebyshev methods

تعداد نتایج: 1878120  

Journal: :Mathematical and Computer Modelling 2011
Jian-zhong Xiao Xing-Hua Zhu

Keywords: Set-valued mapping Chebyshev center Uniformly convex Locally uniformly convex Chebyshev fixed point a b s t r a c t The existence of a continuous Chebyshev selection for a Hausdorff continuous set-valued mapping is studied in a Banach space with some uniform convexity. As applications, some existence results of Chebyshev fixed point for condensing set-valued mappings are given, and th...

2006
Higinio Ramos Jesús Vigo-Aguiar

In this paper we consider a new fourth-order method of BDF-type for solving stiff initial-value problems, based on the interval approximation of the true solution by truncated Chebyshev series. It is shown that the method may be formulated in an equivalent way as a Runge–Kutta method having stage order four. Themethod thus obtained have good properties relatives to stability including an unboun...

2002
Jun Sawada Ruben Gamboa

The IBM Power4 processor uses series approximation to calculate square root. We formally verified the correctness of this algorithm using the ACL2(r) theorem prover. The proof requires the analysis of the approximation error on a Chebyshev series. This is done by proving Taylor’s theorem, and then analyzing the Chebyshev series using Taylor series. Taylor’s theorem is proved by way of non-stand...

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...

2011
L. Zhu Y. X. Wang

In this paper, a numerical method for solving the Fredholm and Volterra integral equations is presented. The method is based upon the second Chebyshev wavelet approximation. The properties of the second Chebyshev wavelet are first presented and then operational matrix of integration of the second Chebyshev wavelets basis and product operation matrix of it are derived. The second Chebyshev wavel...

Journal: :international journal of advanced design and manufacturing technology 0
sedigheh shahmirzaee jeshvaghany department of mechanical and aerospace engineering, science and research branch, islamic azad university, tehran, iran farshad pazooki department of mechanical and aerospace engineering, science and research branch, islamic azad university, tehran, iran. alireza basohbat novinzaddeh department of aerospace engineering, k.n.toosi university of technology, tehran, iran

in this study, the problem of determining an optimal trajectory of a nonlinear injection into orbit problem with minimum time was investigated. the method was based on orthogonal polynomial approximation. this method consists of reducing the optimal control problem to a system of algebraic equations by expanding the state and control vector as chebyshev or legendre polynomials with undetermined...

Journal: :bulletin of the iranian mathematical society 2011
sh. rezapour h. mohebi

2012
Asamoah Nkwanta

Riordan matrix methods and properties of generating functions are used to prove that the entries of two Catalan-type Riordan arrays are linked to the Chebyshev polynomials of the first kind. The connections are that the rows of the arrays are used to expand the monomials (1/2) (2x) and (1/2) (4x) in terms of certain Chebyshev polynomials of degree n. In addition, we find new integral representa...

Journal: :SIAM J. Scientific Computing 1995
Jie Shen

Efficient direct solvers based on the Chebyshev-Galerkin methods for second and fourth order equations are presented. They are based on appropriate base functions for the Galerkin formulation which lead to discrete systems with special structured matrices which can be efficiently inverted. Numerical results indicate that the direct solvers presented in this paper are significantly more accurate...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید