نتایج جستجو برای: complete lie algebra
تعداد نتایج: 461439 فیلتر نتایج به سال:
Let H be the quaternion algebra. Let g be a complex Lie algebra and let U(g) be the enveloping algebra of g. The quaternification g = (H ⊗ U(g), [ , ]gH ) of g is defined by the bracket [ z ⊗ X , w ⊗ Y ] gH = (z · w) ⊗ (XY ) − (w · z) ⊗ (Y X) , for z, w ∈ H and the basis vectors X and Y of U(g). Let SH be the ( non-commutative) algebra of H-valued smooth mappings over S and let Sg = SH ⊗ U(g). ...
A current Lie algebra is contructed from a tensor product of a Lie algebra and a commutative associative algebra of dimension greater than 2. In this work we are interested in deformations of such algebras and in the problem of rigidity. In particular we prove that a current Lie algebra is rigid if it is isomorphic to a direct product g× g × ...× g where g is a rigid Lie algebra. 1 Current Lie ...
It is well known that the Poisson Lie algebra is isomorphic to the Hamiltonian Lie algebra [1],[3],[13]. We show that the Poisson Lie algebra can be embedded properly in the special type Lie algebra [13]. We also generalize the Hamitonian Lie algebra using exponential functions, and we show that these Lie algebras are simple.
using fixed point method, we prove some new stability results for lie $(alpha,beta,gamma)$-derivations and lie $c^{ast}$-algebra homomorphisms on lie $c^{ast}$-algebras associated with the euler-lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید