نتایج جستجو برای: composite scaffold
تعداد نتایج: 144623 فیلتر نتایج به سال:
The design of composite tissue scaffolds containing an extracellular matrix (ECM) and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffol...
A plastic and biodegradable bone substitute consists of poly (L-lactic-co-glycolic) acid and 30 wt % β-tricalcium phosphate has been previously fabricated, but its osteogenic capability required further improvement. We investigated the use of globular adiponectin (gAPN) as an anabolic agent for tissue-engineered bone using this scaffold. A qualitative analysis of the bone regeneration process w...
The specific aim of our investigation is to study the potential use of a collagen/heparin-carrying polystyrene (HCPS) composite extracellular matrix for articular cartilage tissue engineering. Here, we created a high-performance extracellular matrix (HpECM) scaffold to build an optimal extracellular environment using an HCPS we originally developed, and an atelocollagen honeycomb-shaped-scaffol...
The purpose of this study was to investigate the influence of nano-sized β-tricalcium phosphate (β-TCP) on the biological performance of poly (lactic acid) (PLA) composite scaffolds by using in vitro degradation and an in vivo model of heterotopic bone formation. Nano-sized β-TCP (nβ-TCP) was prepared with a wet grinding method from micro-sized β-TCP (mβ-TCP), and composite scaffolds containing...
To determine the optimal ratio of nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) in the novel three-dimensional porous PLLA/n-HA composite scaffolds, low-temperature rapid prototyping technology was employed to fabricate the composite materials with different n-HA contents. Mechanical properties and degradation behaviors of the composites were examined, and the scaffold microstructure and...
Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite-gelatin with a silane cross-linker can significantly affect its me...
Osteoarthritis is the leading cause of physical disability among Americans, and tissue engineered cartilage grafts have emerged as a promising treatment option for this debilitating condition. Currently, the formation of a stable interface between the cartilage graft and subchondral bone remains a significant challenge. This study evaluates the potential of a hybrid scaffold of hydroxyapatite (...
Tissue-engineered cartilage may have potential for the construction of clinical implants for the treatment of congenital deformities or post-traumatic defects. However, the lack of seed cells is a challenge, as is the maintenance of ideal shape and size. We have used bone marrow stromal cells (BMSCs) and a pre-shaped polyglycolic acid (PGA)-porous high-density polyethylene composite scaffold to...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید