نتایج جستجو برای: dip slip dislocation

تعداد نتایج: 53472  

2000
P. Cermelli

Work hardening in crystalline materials is related to the accumulation of statistically stored dislocations in low-energy structures. We present here a model which includes dislocation dynamics in the rate-independent setting for plasticity. Three basic physical features are taken into account: (i) the role of dislocation densities in hardening; (ii) the relations between the slip velocities an...

2013
Huajian Yao Peter M. Shearer Peter Gerstoft

Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest meg...

2013
Serena Dipierro Giampiero Palatucci Enrico Valdinoci

We consider an evolution equation arising in the Peierls–Nabarro model for crystal dislocation. We study the evolution of such dislocation function and show that, at a macroscopic scale, the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. these dislocation points evolve according to t...

2010
Y. T. Zhu X. L. Wu J. Narayan L. J. Kecskés S. N. Mathaudhu

Dislocation interaction with and accumulation at twin boundaries have been reported to significantly improve the strength and ductility of nanostructured face-centered cubic (fcc) metals and alloys. Here we systematically describe plausible dislocation interactions at twin boundaries. Depending on the characteristics of the dislocations and the driving stress, possible dislocation reactions at ...

2016
T. H. Lin S. R. Lin X. Q. Wu

Micromechanic theory of fatigue crack initiation by Lin and his associates is reviewed. Intrusions and extrusions have been observed in fatigue specimens. An initial stress field favorable for the growth of extrusion or intrusion can be produced by arrays of dislocation dipoles as shown by Lin (1969). These dipoles cause an initial tensile strain giving an elongation which is called the static ...

2015
Vlado A. Lubarda

The Peach–Koehler expressions for the glide and climb components of the force exerted on a straight dislocation in an infinite isotropic medium by another straight dislocation are derived by evaluating the plane and antiplane strain versions of J integrals around the center of the dislocation. After expressing the elastic fields as the sums of elastic fields of each dislocation, the energy mome...

2016
R. Armstrong R. W. Armstrong

Crystal dislocations provide the ultimate source of localized damage enhancement within solid materials. Vortices are the dislocation counterparts within liquids and gases. For energetic crystals, tubular holes might run along the pre-existent dislocation line lengths and act as shock-induced "in-situ" hot spots. Beyond this consideration, nearly invisible clouds of dislocations are possibly ge...

2013
J. Wang

We provide an extended Peierls–Nabarro (P–N) formulation with a sinusoidal series representation of generalized stacking fault energy (GSFE) to establish flow stress in a Ni2FeGa shape memory alloy. The resultant martensite structure in Ni2FeGa is L10 tetragonal. The atomistic simulations allowed determination of the GSFE landscapes for the (111) slip plane and 2 1⁄2 101 ; 2 1⁄2 110 ; 6 1⁄2 211...

2012
Joseph A. Yasi Louis G. Hector Dallas R. Trinkle

We develop a geometry-based model from first-principles data for the interaction of solutes with a prismatic screw dislocation core, and predict the thermally activated cross-slip stress above room temperature in Mg alloys. Electronic structure methods provide data for the change in prismatic stacking fault energy for different possible fault configurations for 29 different solutes. The direct ...

2011
Y. Tang E. M. Bringa B. A. Remington M. A. Meyers

Shock-induced spall in ductile metals is known to occur by the sequence of nucleation, growth and coalescence of voids, even in high purity monocrystals. However, the atomistic mechanisms involved are still not completely understood. The growth and collapse of nanoscale voids in tantalum are investigated under different stress states and strain rates by molecular dynamics (MD) simulations. Thre...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید