نتایج جستجو برای: fejer hadamard inequality
تعداد نتایج: 63523 فیلتر نتایج به سال:
In this article, a generalized midpoint-type Hermite–Hadamard inequality and Pachpatte-type via new fractional integral operator associated with the Caputo–Fabrizio derivative are presented. Furthermore, identity for differentiable convex functions of first order is proved. Then, taking into account as an auxiliary result assistance Hölder, power-mean, Young, Jensen inequality, some estimations...
Abstract In this paper, we obtain new Hermite–Hadamard-type inequalities for r -convex and geometrically convex functions and, additionally, some by using the Hölder–İşcan integral inequality an improved power-mean inequality.
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
Recently, new developments of the theory and applications of dynamic derivatives on time scales were made. The study provides an unification and an extension of traditional differential and difference equations and, in the same time, it is a unification of the discrete theory with the continuous theory, from the scientific point of view. Moreover, it is a crucial tool in many computational and ...
Fejer processes are frequently used models for many iterative algorithms in optimization and related areas. They can be combined with different kinds of decomposition schemes and generate various projectiontype methods suitable for parallel computations. This paper reviews some recent results on Fejer processes with diminishing disturbances and suggests a new adaptive parameter-free stepsize co...
equality holds in either side only for the affine functions (i.e., for the functions of the form mx+ n). The middle point (a + b)/2 represents the barycenter of the probability measure 1 b−adx (viewed as a mass distribution over the interval [a, b]), while a and b represent the extreme points of [a, b]. Thus the Hermite-Hadamard inequality could be seen as a precursor of Choquet’s theory. See [...
Let A and B be n n positive semidefinite Hermitian matrices, let c and/ be real numbers, let o denote the Hadamard product of matrices, and let Ak denote any k )< k principal submatrix of A. The following trace and eigenvalue inequalities are shown: tr(AoB) <_tr(AoBa), c_<0or_> 1, tr(AoB)a_>tr(AaoBa), 0_a_ 1, A1/a(A o Ba) <_ Al/(Az o B), a <_ /,a O, Al/a[(Aa)k] <_ A1/[(A)k], a <_/,a/ 0. The equ...
X iv :m at h/ 03 05 37 4v 1 [ m at h. N A ] 2 7 M ay 2 00 3 A GENERALISED TRAPEZOID TYPE INEQUALITY FOR CONVEX FUNCTIONS S.S. DRAGOMIR Abstract. A generalised trapezoid inequality for convex functions and applications for quadrature rules are given. A refinement and a counterpart result for the Hermite-Hadamard inequalities are obtained and some inequalities for pdf’s and (HH)−divergence measur...
In this paper we prove some inequalities for convex function of a higher order. The well known Hermite interpolating polynomial leads us to a converse of Jensen inequality for a regular, signed measure and, as a consequence, a generalization of Hadamard and Petrovi c's inequalities. Also, we obtain a new upper bound for the error function of the Hermite interpolating polynomial je H (x)j in ter...
Given a function f : I → J and a pair of means M and N, on the intervals I and J respectively, we say that f is MN -convex provided that f (M(x, y)) N(f (x), f (y)) for every x , y ∈ I . In this context, we prove the validity of all basic inequalities in Convex Function Theory, such as Jensen’s Inequality and the Hermite-Hadamard Inequality. Mathematics subject classification (2000): 26A51, 26D...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید