Journal:
:international journal of nonlinear analysis and applications2011
h. azadi kenary
in this paper we investigate the generalized hyers-ulamstability of the following cauchy-jensen type functional equation$$qbig(frac{x+y}{2}+zbig)+qbig(frac{x+z}{2}+ybig)+qbig(frac{z+y}{2}+xbig)=2[q(x)+q(y)+q(z)]$$ in non-archimedean spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
In this paper, we present the generalized hyperstability results of cubic functional equation in ultrametric Banach spaces using the fixed point method.