نتایج جستجو برای: invariant bayes estimator abe and hard
تعداد نتایج: 16858108 فیلتر نتایج به سال:
The moment’s estimator (Dekkers et al., 1989) has been used in extreme value theory to estimate the tail index, but it is not location invariant. The location invariant Hill-type estimator (Fraga Alves, 2001) is only suitable to estimate positive indices. In this paper, a new moment-type estimator is studied, which is location invariant. This new estimator is based on the original moment-type e...
Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributi...
The Bayes factor is a useful summary for model selection. Calculation of this measure involves evaluating the integrated likelihood (or prior predictive density), which can be estimated from the output of MCMC and other posterior simulation methods using the harmonic mean estimator. vVhile this is a simulation-consistent estimator, it can have infinite variance. In this article we describe a me...
Meta learning of optimal classifier error rates allows an experimenter to empirically estimate the intrinsic ability of any estimator to discriminate between two populations, circumventing the difficult problem of estimating the optimal Bayes classifier. To this end we propose a weighted nearest neighbor (WNN) graph estimator for a tight bound on the Bayes classification error; the Henze-Penros...
Consider the problem of estimating a multivariate normal mean with a known variance matrix, which is not necessarily proportional to the identity matrix. The coordinates are shrunk directly in proportion to their variances in Efron and Morris’ (J. Amer. Statist. Assoc. 68 (1973) 117–130) empirical Bayes approach, whereas inversely in proportion to their variances in Berger’s (Ann. Statist. 4 (1...
Maximum Echo-State-Likelihood Networks for Emotion Recognition Edmondo Trentin, Stefan Scherer, aand Friedhelm Schwenker Evaluation of Feature Selection by Multiclass Kernel Discriminant Analysis Tsuneyoshi Ishii and Shigeo Abe Correlation-Based and Causal Feature Selection Analysis for Ensemble Classifiers Rakkrit Duangsoithong and Terry Windeatt A New Monte Carlo-based Error Rate Estimator Ah...
In this paper we prove theoretically that for mixture models involving known component densities the variational Bayes estimator converges locally to the maximum likelihood estimator at the rate of O(1/n) in the large sample limit.
In this paper, decision theory was used to derive Bayes and minimax decision rules to estimate allelic frequencies and to explore their admissibility. Decision rules with uniformly smallest risk usually do not exist and one approach to solve this problem is to use the Bayes principle and the minimax principle to find decision rules satisfying some general optimality criterion based on their ris...
Statistical inference is reviewed for survival data applications with hazard models having one parameter per distinct failure time and using Jeffreys' (1961) vague priors. Distinction between a discrete hazard and a piecewise exponential model is made. Bayes estimators of survival probabilities ace derived. For a single sample and a discrete hazard, the Bayes estimator is shown to be larger tha...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید