نتایج جستجو برای: jun
تعداد نتایج: 15998 فیلتر نتایج به سال:
c-jun is the cellular homologue of the recently isolated nuclear oncogene v-jun. This protooncogene encodes the cellular transcription factor AP-1. We have isolated the complementary DNA clone of rat c-jun mRNA. The rat c-jun complementary DNA clone encodes 334 amino acid residues, the sequence of which shows about 98, 96, and 81% homologies with mouse, human, and chicken c-jun products, respec...
The v-jun oncogene encodes a nuclear DNA binding protein that functions as a transcription factor and is part of the activator protein 1 complex. Oncogenic transformation by v-jun is thought to be mediated by the aberrant expression of specific target genes. To identify such Jun-regulated genes and to explore the mechanisms by which Jun affects their expression, we have fused the full-length v-...
c-Jun is a member of the activator protein 1 family, and its interaction with different nuclear factors generates a wide spectrum of complexes that regulate transcription of different promoters. H ferritin promoter transcription is tightly dependent on nuclear factor Y (NFY). Ferritin transcription is activated by c-Jun, although the promoter does not contain a canonical binding site. NFY, on t...
c-jun, which is overexpressed in a number of human cancers encodes a critical component of the AP-1 complex. c-jun has been shown to either induce or inhibit cellular apoptosis. Germ line deletion of both c-jun alleles is embryonically lethal. To determine the role of the endogenous c-jun gene in apoptosis, we performed mammary epithelial cell-targeted somatic deletion using floxed c-jun (c-jun...
We determined the mitogen-activated protein kinase (MAPK) gene expression profile of acquired resistance in sorafenib-sensitive hepatocellular carcinoma (HCC) cells and aimed to identify c-Jun as an important molecule mediating the efficacy of sorafenib. Differences in gene expression of the MAPK signaling between untreated and sorafenib-treated HCC cell lines were investigated using real-time ...
Both the transcription factor c-Jun and the c-Jun N-terminal kinases (JNKs) have been associated with neuronal loss in several death paradigms. JNK are key regulators of c-Jun and a common accepted model has been that JNKs mediate neuronal death through modulation of c-Jun activation. In the present study, we examined whether JNK2 and -3 (JNK members most associated with neuronal loss) deficien...
c-Jun is a transcription factor that is involved in various cellular events, including apoptotic cell death. For example, phosphorylation of c-Jun is one of the earliest biochemical changes detected in dying sympathetic neurons after NGF deprivation in vitro. However, currently, it is not known whether a similar molecular event is involved in the developmental programmed cell death (PCD) of neu...
Understanding the regulation of the apoptotic program in neurons by intracellular pathways is currently a subject of great interest. Recent results suggest that c-Jun N-terminal kinases (JNK), mitogen-activated protein kinases and the transcription factor c-Jun are important regulators of this cell death program in post-mitotic neurons following survival-factor withdrawal. Our study demonstrate...
Significant increase in JNK, c-Jun, and Cdk5 activities are reported in Alzheimer's disease (AD). Inhibition of c-Jun prevents neuronal cell death in in vivo AD models, highlighting it as a major JNK effector. Both JNK and Cdk5 promote neurodegeneration upon deregulation; however, Cdk5 has not been mechanistically linked to JNK or c-Jun. This study presents the first mechanism showing Cdk5 as a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید