نتایج جستجو برای: k domatic number
تعداد نتایج: 1486135 فیلتر نتایج به سال:
A subset, D, of the vertex set of a graph G is called a dominating set of G if each vertex of G is either in D or adjacent to some vertex in D. The maximum cardinality of a partition of the vertex set of G into dominating sets is the domatic number of G, denoted d(G). G is said to be domatically critical if the removal of any edge of G decreases the domatic number, and G is domatically full if ...
We resolve the problem posed as the main open question in [4]: letting δ(G), ∆(G) and D(G) respectively denote the minimum degree, maximum degree, and domatic number (defined below) of an undirected graph G = (V,E), we show that D(G) ≥ (1−o(1))δ(G)/ ln(∆(G)), where the “o(1)” term goes to zero as ∆(G) → ∞. A dominating set of G is any set S ⊆ V such that for all v ∈ V , either v ∈ S or some nei...
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
The chromatic number χ(G) of a graph G is the minimum number of colours required to colour the vertices of G in such a way that no two adjacent vertices of G receive the same colour. A partition of V into χ(G) independent sets (called colour classes) is said to be a χpartition of G. A set S ⊆ V is called a dominating set of G if every vertex in V − S is adjacent to a vertex in S. A dominating s...
iii Acknowledgments I want to thank my thesis advisor Jörg Rothe for all of his support during the past four years. In the first place, I am deeply grateful to him for giving me the chance to be part of his research team. Without his great efforts, I would never have had the chance to work in the scientific community. Many inspiring and valuable discussions with him initiated fruitful ideas tha...
A subset D of the vertex set V (G) of a graph G is called point-set dominating, if for each subset S ⊆ V (G) − D there exists a vertex v ∈ D such that the subgraph of G induced by S ∪ {v} is connected. The maximum number of classes of a partition of V (G), all of whose classes are point-set dominating sets, is the point-set domatic number dp(G) of G. Its basic properties are studied in the paper.
A subset D of V (G) is called an equitable dominating set of a graph G if for every v ∈ (V − D), there exists a vertex u ∈ D such that uv ∈ E(G) and |deg(u) − deg(v)| 6 1. The minimum cardinality of such a dominating set is denoted by γe(G) and is called equitable domination number of G. In this paper we introduce the equitable edge domination and equitable edge domatic number in a graph, exact...
For a nonempty graph G = (V, E), a signed edge-domination of G is a function f : E(G) → {1,−1} such that ∑e′∈NG [e] f (e′) ≥ 1 for each e ∈ E(G). The signed edge-domatic number of G is the largest integer d for which there is a set { f1, f2, . . . , fd} of signed edge-dominations of G such that ∑d i=1 fi (e) ≤ 1 for every e ∈ E(G). This paper gives an original study on this concept and determin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید