نتایج جستجو برای: laplacian spectrum
تعداد نتایج: 235451 فیلتر نتایج به سال:
Let V be any vector bundle over the sphere S n which is associated to the principal bundle of oriented orthonormal frames, or to that of spin frames. We give an explicit formula for the spectrum, with multiplicity, of the Bochner Laplacian r r on V , where r is the Riemannian or Riemannian spin connection. In the case of tensor bundles, we also give the spectrum of the Lichnerowicz Laplacian. T...
This paper exploits the properties of the commute time to develop a graphspectral method for image segmentation. Our starting point is the lazy random walk on the graph, which is determined by the heat-kernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterise the random walk using the commute time between nodes, and show how this quantity may be computed ...
Let Gl be the graph obtained from Kl by adhering the root of isomorphic trees T to every vertex of Kl, and dk−j+1 be the degree of vertices in the level j. In this paper we study the spectrum of the adjacency matrix A(Gl) and the Laplacian matrix L(Gl) for all positive integer l, and give some results about the spectrum of the adjacency matrix A(Gl) and the Laplacian matrix L(Gl). By using thes...
We show that a noncompact manifold with bounded sectional curvature, whose ends are sufficiently collapsed, has a finite dimensional space of square-integrable harmonic forms. In the special case of a finite-volume manifold with pinched negative sectional curvature, we show that the essential spectrum of the p-form Laplacian is the union of the essential spectra of a collection of ordinary diff...
Reiner and Webb (preprint, 2002) compute the Sn-module structure for the complex of injective words. This paper refines their formula by providing a Hodge type decomposition. Along the way, this paper proves that the simplicial boundary map interacts in a nice fashion with the Eulerian idempotents. The Laplacian acting on the top chain group in the complex of injective words is also shown to eq...
The behaviour of the spectral edges (embedded eigenvalues and resonances) is discussed at the two ends of the continuous spectrum of non-local discrete Schrödinger operators with a δ-potential. These operators arise by replacing the discrete Laplacian by a strictly increasing C1-function of the discrete Laplacian. The dependence of the results on this function and the lattice dimension are expl...
We compute the spectrum of the Dirac operator on 3-dimensional Heisenberg manifolds. The behavior under collapse to the 2-torus is studied. Depending on the spin structure either all eigenvalues tend to ±∞ or there are eigenvalues converging to those of the torus. This is shown to be true in general for collapsing circle bundles with totally geodesic fibers. Using the Hopf fibration we use this...
The spectrum of a matrix M is the multiset that contains all the eigenvalues of M. If M is a matrix obtained from a graph G, then the spectrum of M is also called the graph spectrum of G. If two graphs has the same spectrum, then they are cospectral (or isospectral) graphs. In this paper, we compare four spectra of matrices to examine their accuracy in protein structural comparison. These four ...
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian d...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید