نتایج جستجو برای: magnetic iron nanoparticles
تعداد نتایج: 562669 فیلتر نتایج به سال:
The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of w...
Present work describes the formation of α-Fe2O3@SiO2 core shell structure by systematic layer by layer deposition of silica shell on core iron oxide nanoparticles prepared via various solvents. Sol-gel method has been used to synthesize magnetic core and the dielectric shell. The average crystallite size of iron oxide nanoparticles was calculated ∼20 nm by X-ray diffraction pattern. Morphologic...
One-pot reaction of aldehydes or ketons with aniline derivatives was performed using NaBH4 and Fe3O4 magnetic nanoparticles (MNPs). The optimum amount of Fe3O4 MNPs was 5 mol% under solvent free condition. The corresponding products were obtained in good to excellent yields. The magnetically recoverable iron oxide nanoparticles are found to be efficient for synthesis of amine derivatives. These...
In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...
The main goal of this work is to study the structural and magnetic properties of iron nanowires and iron nanoparticles, which have been fabricated in almost the same processes. The only difference in the synthesis is an application of an external magnetic field in order to form the iron nanowires. Both nanomaterials have been examined by means of transmission electron microscopy, energy dispers...
PURPOSE The presence of tumor-associated macrophages (TAM) in breast cancer correlates strongly with poor outcome. The purpose of this study was to develop a clinically applicable, noninvasive diagnostic assay for selective targeting and visualization of TAMs in breast cancer, based on magnetic resonanceI and clinically applicable iron oxide nanoparticles. EXPERIMENTAL DESIGN F4/80-negative m...
Magnetic characterization of spherical, oxide-free, bcc iron nanoparticles synthesized with b-diketone surfactants has been performed. The results of this characterization, which included particles with diameters ranging between 2 and 5 nm show that the nanoparticles have an average anisotropy of 1.9 1070.3 10 J/m, which is more than an order of magnitude greater than the magnetocrystalline ani...
Magnetic nanoparticles are of great interest for researchers from a wide range of disciplines, including nano-magnetic fluids, nanocatalysis, biomedical applications, magnetic resonance imaging, and specifically environmental remediation. Nanomaterial like Iron Oxide (Fe3O4) is one of the most promising candidates to remove heavy metals and dyestuffs from the indust...
Superparamagnetic iron oxide nanoparticles produce changes in the surrounding microscopic magnetic field. A method for generating contrast based on the application of an adiabatic preparation pulse and the failure of the adiabatic condition surrounding the nanoparticles is introduced in this article. Images were obtained in the presence and absence of an adiabatic preparation pulse and the diff...
We present an in situ experimental investigation of the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm as a function of oxygen exposure (0-80 L), using X-ray photoemission electron microscopy. The X-ray absorption spectroscopy results show that, irrespective of size and magnetic state, the early stages of the Fe nanoparticle oxidation occu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید