نتایج جستجو برای: matroid
تعداد نتایج: 3120 فیلتر نتایج به سال:
We prove that a binary matroid with huge branch-width contains the cycle matroid of a large grid as a minor. This implies that an infinite antichain of binary matroids cannot contain the cycle matroid of a planar graph. The result also holds for any other finite field. © 2007 Elsevier Inc. All rights reserved.
Let F4 be the root system associated with the 24-cell, and let M(F4) be the simple linear dependence matroid corresponding to this root system. We determine the automorphism group of this matroid and compare it to the Coxeter group W for the root system. We find non-geometric automorphisms that preserve the matroid but not the root system.
The most important open conjecture in the context of the matroid secretary problem claims the existence of an O(1)-competitive algorithm applicable to any matroid. Whereas this conjecture remains open, modified forms of it have been shown to be true, when assuming that the assignment of weights to the secretaries is not adversarial but uniformly at random [23, 20]. However, so far, no variant o...
As part of the recent developments in infinite matroid theory, there have been a number of conjectures about how standard theorems of finite matroid theory might extend to the infinite setting. These include base packing, base covering, and matroid intersection and union. We show that several of these conjectures are equivalent, so that each gives a perspective on the same central problem of in...
A matroid or oriented matroid is dyadic if it has a rational representation with all nonzero subde-terminants in ff2 k : k 2 Zg. Our main theorem is that an oriented matroid is dyadic if and only if the underlying matroid is ternary. A consequence of our theorem is the recent result of G. Whittle that a rational matroid is dyadic if and only if it is ternary. Along the way, we establish that ea...
The point we try to get across is that the generalization of the counterparts of the matroid theory in Cayley graphs since the matroid theory frequently simplify the graphs and so Cayley graphs. We will show that, for a Cayley graph ΓG, the cutset matroid M ∗(ΓG) is the dual of the circuit matroid M(ΓG). We will also deduce that if Γ ∗ G is an abstract-dual of a Cayley graph Γ, then M(Γ∗ G ) is...
A clutter or antichain on a set defines a hypergraph. Matroid ports are a special class of clutters, and this paper deals with the diameter of matroid ports, that is, the diameter of the corresponding hypergraphs. Specifically, we prove that the diameter of every matroid port is at most 2. The main interest of our result is its application to secret sharing. Brickell and Davenport proved in 198...
For a matroid with an ordered (or “labelled”) basis, a basis exchange step removes one element with label l and replaces it by a new element that results in a new basis, and with the new element assigned label l. We prove that one labelled basis can be reconfigured to another if and only if for every label, the initial and final elements with that label lie in the same connected component of th...
A matroid has the weak half-plane property (WHPP) if there exists a stable polynomial with support equal to the set of bases of the matroid. If the polynomial can be chosen with all nonzero coefficients equal to one then the matroid has the half-plane property (HPP). We describe a systematic method that allows us to reduce the WHPP to the HPP for large families of matroids. This method makes us...
Consider a matrix with m rows and n pairs of columns. The linear matroid parity problem (LMPP) is to determine a maximum number of pairs of columns that are linearly independent. We show how to solve the linear matroid parity problem as a sequence of matroid intersection problems. The algorithm runs in O(mn). Our algorithm is comparable to the best running time for the LMPP, and is far simpler ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید