نتایج جستجو برای: minkowski type inequality
تعداد نتایج: 1398071 فیلتر نتایج به سال:
For origin-symmetric convex bodies (i.e., the unit balls of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities are “equiv...
A close discrete analog of the classical Brunn-Minkowksi inequality that holds for finite subsets of the integer lattice is obtained. This is applied to obtain strong new lower bounds for the cardinality of the sum of two finite sets, one of which has full dimension, and, in fact, a method for computing the exact lower bound in this situation, given the dimension of the lattice and the cardinal...
In this research, we introduce some new fractional integral inequalities of Minkowski’s type by using Riemann-Liouville operator. We replace the constants that appear on inequality two positive functions. Further, establish related to reverse Minkowski via integral. Using operator, special cases are also discussed.
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
Analogs of the classical inequalities from the Brunn Minkowski Theory for rotation intertwining additive maps of convex bodies are developed. We also prove analogs of inequalities from the dual Brunn Minkowski Theory for intertwining additive maps of star bodies. These inequalities provide generalizations of results for projection and intersection bodies. As a corollary we obtain a new Brunn Mi...
Abstract This paper aims to consider the dual Brunn–Minkowski inequality for log-volume of star bodies, and equivalent Minkowski mixed log-volume.
We prove the following isoperimetric type inequality: Given a finite absolutely continuous Borel measure on ${\mathbb R}^n$, halfspaces have maximal among all subsets with prescribed barycenter. As consequence, we make progress towards solution to problem of Henk and Pollehn, which is equivalent Log-Minkowski inequality for parallelotope centered convex body. Our probabilistic approach also giv...
One of the application areas of abstract convexity is inequality theory. In this work, the authors seek to derive new inequalities by sharpening well-known inequalities by the use of abstract convexity. Cauchy-Schwarz inequality, Minkowski inequality and well-known mean inequalities are studied in this sense, concrete results are obtained for some of them. Mathematics subject classification (20...
A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for...
Relative to the Gaussian measure on R, entropy and Fisher information are famously related via Gross’ logarithmic Sobolev inequality (LSI). These same functionals also separately satisfy convolution inequalities, as proved by Stam. We establish a dimension-free inequality that interpolates among these relations. Several interesting corollaries follow: (i) the deficit in the LSI satisfies a conv...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید