نتایج جستجو برای: modified subgradient method
تعداد نتایج: 1831354 فیلتر نتایج به سال:
Stochastic subgradient methods play an important role in machine learning. We introduced the concepts of subgradient methods and stochastic subgradient methods in this project, discussed their convergence conditions as well as the strong and weak points against their competitors. We demonstrated the application of (stochastic) subgradient methods to machine learning with a running example of tr...
In this paper a new algorithm for minimizing locally Lipschitz functions is developed. Descent directions in this algorithm are computed by solving a system of linear inequalities. The convergence of the algorithm is proved for quasidifferentiable semismooth functions. We present the results of numerical experiments with both regular and nonregular objective functions. We also compare the propo...
We propose and analyze an inexact version of the modified subgradient (MSG) algorithm, which we call the IMSG algorithm, for nonsmooth and nonconvex optimization over a compact set. We prove that under an approximate, i.e. inexact, minimization of the sharp augmented Lagrangian, the main convergence properties of the MSG algorithm are preserved for the IMSG algorithm. Inexact minimization may a...
The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton’s method and can be applied to a wider variety of problems. It also converges when the objective function is nondifferentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorith...
Block coordinate descent methods and stochastic subgradient methods have been extensively studied in optimization and machine learning. By combining randomized block sampling with stochastic subgradient methods based on dual averaging ([22, 36]), we present stochastic block dual averaging (SBDA)—a novel class of block subgradient methods for convex nonsmooth and stochastic optimization. SBDA re...
When nonsmooth, convex minimizationproblems are solved by subgradientoptimizationmethods, the subgradients used will in general not accumulate to subgradients which verify the optimal-ity of a solution obtained in the limit. It is therefore not a straightforward task to monitor the progress of a subgradient method in terms of the approximate fulllment of optimality conditions. Further, certain ...
We consider computing the saddle points of a convex-concave function using subgradient methods. The existing literature on finding saddle points has mainly focused on establishing convergence properties of the generated iterates under some restrictive assumptions. In this paper, we propose a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید