نتایج جستجو برای: modular edge coloring

تعداد نتایج: 168217  

2017
Leonid Barenboim Michael Elkin Tzalik Maimon

In the distributed message-passing setting a communication network is represented by a graph whose vertices represent processors that perform local computations and communicate over the edges of the graph. In the distributed edge-coloring problem the processors are required to assign colors to edges, such that all edges incident on the same vertex are assigned distinct colors. The previouslykno...

2014
Parinya Chalermsook Bundit Laekhanukit Danupon Nanongkai

We consider the question of computing the strong edge coloring, square graph coloring, and their generalization to coloring the k power of graphs. These problems have long been studied in discrete mathematics, and their “chaotic” behavior makes them interesting from an approximation algorithm perspective: For k = 1, it is well-known that vertex coloring is “hard” and edge coloring is “easy” in ...

2014
Marthe Bonamy Benjamin L'eveque Alexandre Pinlou

For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are adjacent, or a vertex and an edge that ar...

Journal: :CoRR 2012
Heidi Gebauer Frank Mousset

In a properly edge colored graph, a subgraph using every color at most once is called rainbow. In this thesis, we study rainbow cycles and paths in proper edge colorings of complete graphs, and we prove that in every proper edge coloring of Kn, there is a rainbow path on (3/4− o(1))n vertices, improving on the previously best bound of (2n + 1)/3 from [?]. Similarly, a k-rainbow path in a proper...

Journal: :Discrete Mathematics 2015
Penny E. Haxell Hal A. Kierstead

One consequence of an old conjecture of Goldberg and Seymour about the chromatic index of multigraphs would be the following statement. Suppose G is a multigraph with maximum degree ∆, such that no vertex subset S of odd size at most ∆ induces more than (∆+1)(|S|−1)/2 edges. Then G has an edge coloring with ∆ + 1 colors. Here we prove a weakened version of this statement.

Journal: :Electronic Notes in Discrete Mathematics 2008
Jean Cardinal Vlady Ravelomanana Mario Valencia-Pabon

The edge strength s(G) of a multigraph G is the minimum number of colors in a minimum sum edge coloring of G. We give closed formulas for the edge strength of bipartite multigraphs and multicycles. These are shown to be classes of multigraphs for which the edge strength is always equal to the chromatic index.

2017
Daniel W. Cranston

An acyclic edge-coloring of a graph G is a proper edge-coloring of G such that the subgraph induced by any two color classes is acyclic. The acyclic chromatic index, χa(G), is the smallest number of colors allowing an acyclic edge-coloring of G. Clearly χa(G) ≥ ∆(G) for every graph G. Cohen, Havet, and Müller conjectured that there exists a constant M such that every planar graph with ∆(G) ≥M h...

Journal: :Inf. Process. Lett. 1995
Ravi Jain John Werth

The problem of edge coloring a bipartite graph is to color the edges so that adjacent edges receive di erent colors An optimal algorithm uses the minimum number of colors to color the edges We consider several approximation algorithms for edge coloring bipartite graphs and show tight bounds on the number of colors they use in the worst case We also present results on the constrained edge colori...

Journal: :Discrete Mathematics 2012
Mohammed Amin Tahraoui Éric Duchêne Hamamache Kheddouci

In this paper, we study a new coloring parameter of graphs called the gap vertexdistinguishing edge coloring. It consists in an edge-coloring of a graph G which induces a vertex distinguishing labeling of G such that the label of each vertex is given by the difference between the highest and the lowest colors of its adjacent edges. The minimum number of colors required for a gap vertex-distingu...

Journal: :Eur. J. Comb. 2012
Hao Li Guanghui Wang

Given a graph G and an edge coloring C of G, a heterochromatic cycle of G is a cycle in which any pair of edges have distinct colors. Let dc(v), named the color degree of a vertex v, be the maximum number of distinct colored edges incident with v. In this paper, some color degree conditions for the existence of heterochromatic cycles are obtained.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید