نتایج جستجو برای: module of rupture

تعداد نتایج: 21172522  

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

Journal: :sahand communications in mathematical analysis 0
mohammad hossein sattari department of mathematics, faculty of science, azarbaijan shahid madani university, p.o.box 53751-71379, tabriz, iran. hamid shafieasl department of mathematics, faculty of science, azarbaijan shahid madani university, p.o.box 53751-71379, tabriz, iran.

in this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric connes amenability. we determine symmetric module amenability and symmetric connes amenability of some concrete banach algebras. indeed, it is shown that $ell^1(s)$ is  a symmetric $ell^1(e)$-module amenable if and only if $s$ is amenable, where $s$ is an inverse semigroup with subsemigr...

In this work, we introduce $H^*$-condition on the set of submodules of a module. Let $M$ be a module. We say $M$ satisfies $H^*$ provided that for every submodule $N$ of $M$, there is a direct summand$D$ of $M$ such that $(N+D)/N$ and $(N+D)/D$ are cosingular. We show that over a right perfect right $GV$-ring,a homomorphic image of a $H^*$ duo module satisfies $H^*$.

Let $R$ be a commutative ring with identity and $M$ be an unitary $R$-module. The intersection graph of an $R$-module $M$, denoted by $Gamma(M)$, is a simple graph whose vertices are all non-trivial submodules of $M$ and two distinct vertices $N_1$ and $N_2$ are adjacent if and only if $N_1cap N_2neq 0$. In this article, we investigate the concept of a planar intersection graph and maximal subm...

Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.

Journal: :journal of algebra and related topics 2014
h. fazaeli moghimi f. rashedi m. samiei

primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. in fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly.  in this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful pr...

Let R be a commutative ring and M be an R-module. We say that M is fully primary, if every proper submodule of M is primary. In this paper, we state some characterizations of fully primary modules. We also give some characterizations of rings over which every module is fully primary, and of those rings over which there exists a faithful fully primary module. Furthermore, we will introduce some ...

M.R. Vedadi

We call a module  essentially retractable if HomR for all essential submodules N of M. For a right FBN ring R, it is shown that: (i)  A non-zero module  is retractable (in the sense that HomR for all non-zero ) if and only if certain factor modules of M are essentially retractable nonsingular modules over R modulo their annihilators. (ii)  A non-zero module  is essentially retractable if and on...

Abstract. Let (R,P) be a Noetherian unique factorization do-main (UFD) and M be a finitely generated R-module. Let I(M)be the first nonzero Fitting ideal of M and the order of M, denotedord_R(M), be the largest integer n such that I(M) ⊆ P^n. In thispaper, we show that if M is a module of order one, then either Mis isomorphic with direct sum of a free module and a cyclic moduleor M is isomorphi...

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید