نتایج جستجو برای: multi label data

تعداد نتایج: 2803845  

2008
Andreas P. Streich Joachim M. Buhmann

Multi-label classification assigns a data item to one or several classes. This problem of multiple labels arises in fields like acoustic and visual scene analysis, news reports and medical diagnosis. In a generative framework, data with multiple labels can be interpreted as additive mixtures of emissions of the individual sources. We propose a deconvolution approach to estimate the individual c...

Journal: :CoRR 2014
Yanwei Fu Yongxin Yang Timothy M. Hospedales Tao Xiang Shaogang Gong

Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...

2017
LING JIAN JUNDONG LI HUAN LIU

In conventional supervised learning paradigm, each data instance is associated with one single class label. Multi-label learning differs in the way that data instances may belong to multiple concepts simultaneously, which naturally appear in a variety of high impact domains, ranging from bioinformatics, information retrieval to multimedia analysis. It targets to leverage the multiple label info...

2016
Arjun Pakrashi Derek Greene Brian Mac Namee

Multi-label classification is an approach to classification problems that allows each data point to be assigned to more than one class at the same time. Real life machine learning problems are often multi-label in nature—for example image labelling, topic identification in texts, and gene expression prediction. Many multi-label classification algorithms have been proposed in the literature and,...

Journal: :OJSW 2016
Rafael Peixoto Thomas Hassan Christophe Cruz Aurélie Bertaux Nuno Silva

Extracting valuable data among large volumes of data is one of the main challenges in Big Data. In this paper, a Hierarchical Multi-Label Classification process called Semantic HMC is presented. This process aims to extract valuable data from very large data sources, by automatically learning a label hierarchy and classifying data items.The Semantic HMC process is composed of five scalable step...

2014
Newton Spolaôr

Feature Selection plays an important role in machine learning and data mining, and it is often applied as a data pre-processing step. This task can speed up learning algorithms and sometimes improve their performance. In multi-label learning, label dependence is considered another aspect that can contribute to improve learning performance. A replicable and wide systematic review performed by us...

Journal: :Pattern Recognition 2017
Jesse Read Luca Martino Jaakko Hollmén

The number of methods available for classification of multi-label data has increased rapidly over recent years, yet relatively few links have been made with the related task of classification of sequential data. If labels indices are considered as time indices, the problems can often be seen as equivalent. In this paper we detect and elaborate on connections between multi-label methods and Mark...

2014
Serhat Selçuk Bucak

MULTIPLE KERNEL AND MULTI-LABEL LEARNING FOR IMAGE CATEGORIZATION By Serhat Selçuk Bucak One crucial step in recovering useful information from large image collections is image categorization. The goal of image categorization is to find the relevant labels for a given image from a closed set of labels. Despite the huge interest and significant contributions by the research community, there rema...

Journal: :CoRR 2017
Trang Pham Truyen Tran Svetha Venkatesh

Much recent machine learning research has been directed towards leveraging shared statistics among labels, instances and data views, commonly referred to as multi-label, multi-instance and multi-view learning. The underlying premises are that there exist correlations among input parts and among output targets, and the predictive performance would increase when the correlations are incorporated....

Journal: :International Journal of Computer Applications 2017

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید