نتایج جستجو برای: net laplacian energy
تعداد نتایج: 766065 فیلتر نتایج به سال:
For a simple digraph G of order n with vertex set {v1, v2, . . . , vn}, let d+i and d − i denote the out-degree and in-degree of a vertex vi in G, respectively. Let D (G) = diag(d+1 , d + 2 , . . . , d + n ) and D−(G) = diag(d1 , d − 2 , . . . , d − n ). In this paper we introduce S̃L(G) = D̃(G)−S(G) to be a new kind of skew Laplacian matrix of G, where D̃(G) = D+(G)−D−(G) and S(G) is the skew-adj...
Improvement of feed efficiency in dairy farming economically has a great importance. In this study, the genetic parameters of net energy efficiency and its relationships with milk yield, 3.2% fat corrected milk, body weight, gross income and income over feed costs were investigated, by the 2589 monthly records collected from the 723 lactating cows in the 3 herds. The different requirements of e...
By embedding images as surfaces in a high dimensional coordinate space defined by each pixel’s Cartesian coordinates and color values, we directly define and employ cotangent-based, discrete differentialgeometry operators. These operators define discrete energies useful for image segmentation and colorization.
In geometry processing, smoothness energies are commonly used to model scattered data interpolation, dense data denoising, and regularization during shape optimization. The squared Laplacian energy is a popular choice of energy and has a corresponding standard implementation: squaring the discrete Laplacian matrix. For compact domains, when values along the boundary are not known in advance, th...
In this work, we study the stability of Hopf vector fields on Lorentzian Berger spheres as critical points of the energy, the volume and the generalized energy. In order to do so, we construct a family of vector fields using the simultaneous eigenfunctions of the Laplacian and of the vertical Laplacian of the sphere. The Hessians of the functionals are negative when they act on these particular...
The Laplacian energy of a graph sums up the absolute values of the differences of average degree and eigenvalues of the Laplace matrix of the graph. This spectral graph parameter is upper bounded by the energy obtained when replacing the eigenvalues with the conjugate degree sequence of the graph, in which the i-th number counts the nodes having degree at least i. Because the sequences of eigen...
This is an expository paper which includes several topics related to the Dirichlet form analysis on the Sierpiński gasket. We discuss the analog of the classical Laplacian; approximation by harmonic functions that gives a notion of a gradient; directional energies and an equipartition of energy; analysis with respect to the energy measure; harmonic coordinates; and non self-similar Dirichlet fo...
The centrality of vertices has been a key issue in network analysis. For unweighted networks where edges are just present or absent and have no weight attached, many centrality measures have been presented, such as degree, betweenness, closeness, eigenvector and subgraph centrality. There has been a growing need to design centrality measures for weighted networks, because weighted networks wher...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید