نتایج جستجو برای: nil clean ring

تعداد نتایج: 159671  

2008
FRANÇOIS COUCHOT

Let R be a commutative local ring. It is proved that R is Henselian if and only if each R-algebra which is a direct limit of module finite R-algebras is strongly clean. So, the matrix ring Mn(R) is strongly clean for each integer n > 0 if R is Henselian and we show that the converse holds if either the residue class field of R is algebraically closed or R is an integrally closed domain or R is ...

Journal: :Journal of Physics: Conference Series 2021

2003
Warren Wm. McGovern

An element in a ring is called clean if it may be written as a sum of a unit and idempotent. The ring itself is called clean if every element is clean. Recently, Anderson and Camillo (Anderson, D. D., Camillo, V. (2002). Commutative rings whose elements are a sum of a unit and an idempotent. Comm. Algebra 30(7):3327–3336) has shown that for commutative rings every von-Neumann regular ring as we...

2004
AYMAN BADAWI

For a commutative ring R, let Nil(R) be the set of all nilpotent elements of R, Z(R) be the set of all zero divisors of R, T (R) be the total quotient ring of R, and H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. For a ring R ∈ H, let φ : T (R) −→ RNil(R) such that φ(a/b) = a/b for every a ∈ R and b ∈ R\Z(R). A ring R is called a ZPUI ring if every proper ideal of R...

2008
XIANDE YANG

A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute with each other. A recent result of Borooah, Diesl and Dorsey [3] completely characterized the commutative local rings R for which Mn(R) is strongly clean. For a general local ring R and n > 1, however, it is unknown when the matrix ring Mn(R) is strongly clean. Here we completely determi...

2008
Said N. Sidki SAID N. SIDKI

We define the notions of finite-state and functionally recursive matrices and their growth. We also introduce two rings generated by functionally recursive matrices. The first is isomorphic to the 2-generated free ring. The second is a 2-generated monomial ring such that the multiplicative semigroup of monomials in the generators is nil of degree 5 and the ring has Gelfand Kirillov dimension 1 ...

Journal: :Int. J. Math. Mathematical Sciences 2006
Ravi Srinivasa Rao K. Siva Prasad

The notions of a right quasiregular element and right modular right ideal in a near-ring are initiated. Based on these J 0(R), the right Jacobson radical of type-0 of a near-ring R is introduced. It is obtained that J 0 is a radical map andN(R)⊆ J 0(R), whereN(R) is the nil radical of a near-ring R. Some characterizations of J 0(R) are given and its relation with some of the radicals is also di...

Journal: :Journal of Algebra Combinatorics Discrete Structures and Applications 2016

2008
LINGLING FAN XIANDE YANG

Let R be an associative ring with identity, C(R) denote the center of R, and g(x) be a polynomial in the polynomial ring C(R)[x]. R is called strongly g(x)-clean if every element r ∈ R can be written as r = s+u with g(s) = 0, u a unit of R, and su = us. The relation between strongly g(x)-clean rings and strongly clean rings is determined, some general properties of strongly g(x)-clean rings are...

1995
SHRAWAN KUMAR

Let G be a semi-simple simply-connected complex algebraic group and T ⊂ B a maximal torus and a Borel subgroup respectively. Let h = Lie T be the Cartan subalgebra of the Lie algebra Lie G, and W := N(T )/T the Weyl group associated to the pair (G, T ), where N(T ) is the normalizer of T in G. We can view any element w = w mod T ∈ W as the element (denoted by the corresponding German character)...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید