نتایج جستجو برای: objective particle swarm optimization
تعداد نتایج: 998346 فیلتر نتایج به سال:
This paper systematically presents the Swarm Intelligence (SI) methods for optimization of multiple and many objective problems. The fundamental difference of Multiple andMany Objective Optimization problems have been studied very rigorously. The three forefront swarm intelligence methods, i.e., Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony Optimiza...
Portfolio optimization is a multi-objective problem (MOOP) with risk and profit, or some form of the two, as competing objectives. Single-objective portfolio requires trade-off coefficient to be specified in order balance two Erwin Engelbrecht proposed set-based approach single-objective optimization, namely, particle swarm (SBPSO). SBPSO selects sub-set assets that search space for secondary t...
We propose a novel generalized algorithmic framework to utilize particle filter for optimization incorporated with the swarm move method in particle swarm optimization (PSO). In this way, the PSO update equation is treated as the system dynamic in the state space model, while the objective function in optimization problem is designed as the observation/measurement in the state space model. Part...
The multiple criteria nature of most real world problems has boosted research on multi-objective algorithms that can tackle such problems effectively, with the smallest possible computational burden. Particle Swarm Optimization has attracted the interest of researchers due to its simplicity, effectiveness and efficiency in solving numerous single-objective optimization problems. Up-to-date, the...
The dogleg severity is one of the most important parameters in directional drilling. Improvement of these indicators actually means choosing the best conditions for the directional drilling in order to reach the target point. Selection of high levels of the dogleg severity actually means minimizing well trajectory, but on the other hand, increases fatigue in drill string, increases torque and d...
This paper studies a parallel version of the Vector Evaluated Particle Swarm Optimization (VEPSO) method for multiobjective problems. Experiments on well known and widely used test problems are performed, aiming at investigating both the efficiency of VEPSO as well as the advantages of the parallel implementation. The obtained results are compared with the corresponding results of the Vector Ev...
This paper presents a Swarm Intelligence based approach for sensor management of a multi sensor networks. Alternate sensor configurations and fusion strategies are evaluated by swarm agents, and an optimum configuration and fusion strategy evolves. An evolutionary algorithm, particle swarm optimization, is modified to optimize two objectives: accuracy and time. The output of the algorithm is th...
A Review of Multi-objective Particle Swarm Optimization Algorithms in Power System Economic Dispatch
Particle swarm optimization (PSO) has received increasing attention in solving multi-objective economic dispatch (ED) problems in power systems because of parallel computation, faster convergence, and easier implementation. This paper presents a detailed overview of multi-objective particle swarm optimization (MOPSO) and provides a comprehensive survey on its applications in power system econom...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید