نتایج جستجو برای: osteoclast
تعداد نتایج: 6026 فیلتر نتایج به سال:
Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the prev...
The osteoclast is a bone-degrading polykaryon. Recent studies have clarified the differentiation of this cell and the biochemical mechanisms it uses to resorb bone. The osteoclast derives from a monocyte/macrophage precursor. Osteoclast formation requires permissive concentrations of M-CSF and is driven by contact with mesenchymal cells in bone that bear the TNF-family ligand RANKL. Osteoclast ...
Identification of receptor activator of nuclear factor-kappaB (RANK) and RANK-ligand (RANKL) has provided new insights into the osteoclast differentiation pathway. Osteoclast precursor cells were isolated using monoclonal antibodies against c-Fms and RANK, and the effect of adherence on the in vitro differentiation and proliferation of these cells was examined in 2 different types of stromal-ce...
Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown. Here, we show that increased osteoclastic miR-214-3p associates with both elevated serum exosomal miR-214-3p and reduced bone fo...
Microtubule organization and lysosomal secretion are both critical for the activation and function of osteoclasts, highly specialized polykaryons that are responsible for bone resorption and skeletal homeostasis. Here, we have identified a novel interaction between microtubule regulator LIS1 and Plekhm1, a lysosome-associated protein implicated in osteoclast secretion. Decreasing LIS1 expressio...
INTRODUCTION Osteoclasts are multinucleated cells that are derived from the hematopoietic myeloid/monocyte lineage via the action of M-CSF and receptor activator of NF-κB ligand (RANKL) (1). Binding of RANKL to RANK activates and/or induces expression of the transcription factors NF-κB, AP-1, and NFAT2, which are important for osteoclast differentiation (1, 2). Fusion-induced osteoclast formati...
The role of TNF-α and IFN-γ in the formation of osteoclasts and bone absorption in bone tuberculosis
Bone-joint tuberculosis is one lytic bone lesion caused by Tubercle bacilli. Tumor necrosis factor (TNF)-α interferon (IFN)-γ can mediate bone formation and osteoclasts. This study aimed to investigate the effect of these factors in the effect of Tubercle bacilli on osteoclast formation and bone absorption. Bone marrow mononuclear cells were separated and generated for osteoblast-osteoclast co-...
Staphylococcus aureus (S. aureus) is the most common organism causing osteomyelitis, and Staphylococcus aureus protein A (SpA) is an important virulence factor anchored in its cell wall. However, the precise mechanisms underlying the bone loss caused by SpA have not been well understood. The present study aimed to investigate the effect of SpA on osteoclast differentiation, and the probable mec...
LIS1 Regulates Osteoclastogenesis through Modulation of M-SCF and RANKL Signaling Pathways and CDC42
We have previously reported that depletion of LIS1, a key regulator of microtubules and cytoplasmic dynein motor complex, in osteoclast precursor cells by shRNAs attenuates osteoclastogenesis in vitro. However, the underlying mechanisms remain unclear. In this study, we show that conditional deletion of LIS1 in osteoclast progenitors in mice led to increased bone mass and decreased osteoclast n...
The bone is the third most common site of cancer metastasis. To invade the bone, tumor cells produce osteoclast-activating factors that increase bone resorption by osteoclasts. Here we report that human neuroblastoma cells that form osteolytic lesions in vivo do not produce osteoclast-activating factors but rather stimulate osteoclast activity in the presence of human bone marrow mesenchymal st...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید