The existence and uniqueness of a variational solution are proved for the following nonautonomous nonclassical diffusion equation ut − εΔut − Δu f u g x, t , ε ∈ 0, 1 , in a noncylindrical domain with homogeneous Dirichlet boundary conditions, under the assumption that the spatial domains are bounded and increase with time. Moreover, the nonautonomous dynamical system generated by this class of...