نتایج جستجو برای: row substochastic matrices
تعداد نتایج: 92735 فیلتر نتایج به سال:
Generalizing the Bruhat order for permutations (so for permutation matrices), a Bruhat order is defined for the class of m by n (0, 1)-matrices with a given row and column sum vector. An algorithm is given for constructing a minimal matrix (with respect to the Bruhat order) in such a class. This algorithm simplifies in the case that the row and column sums are all equal to a constant k. When k ...
We show that the computation of the Popov form of Ore polynomial matrices can be formulated as a problem of computing the left nullspace of such matrices. While this technique is already known for polynomial matrices, the extension to Ore polynomial matrices is not immediate because multiplication of the matrix entries is not commutative. A number of results for polynomial matrices are extended...
An increasing number of applications is concerned with recovering a sparsity can be defined in terms of lq balls for q 2 [0, 2), defined as Bq(s) = { v = (vi) 2 R2 : n2 ∑
Orthogonal matrices over arbitrary elds are de ned together with their non-square analogs, which are termed row-orthogonal matrices. Antiorthogonal and self-orthogonal square matrices are introduced together with their non-square analogs. The relationships of these matrices to such codes as self-dual codes and linear codes with complementary duals are given.
We propose two simple upper bounds for the joint spectral radius of sets of nonnegative matrices. These bounds, the joint column radius and the joint row radius, can be computed in polynomial time as solutions of convex optimization problems. We show that for general matrices these bounds are within a factor 1/n of the exact value, where n is the size of the matrices. Moreover, for sets of matr...
It has been shown that combinatorial optimization of matrix-vector multiplication can lead to faster evaluation of finite element stiffness matrices. Based on a graph model characterizing relationships between rows, an efficient set of operations can be generated to perform matrix-vector multiplication for this problem. We improve the graph model by extending the set of binary row relationships...
This paper presents a fast incremental algorithm for low rank approximations or dimensionality reduction of matrices. Assuming that matrices have double-sided type of decomposition, we can set up an incremental solution that constitutes two coupled eigenmodels and thus a two-step updating procedure. At each step, we first represent row-row or column-column covariance matrix as the form of eigen...
Monotone triangles are plane integer arrays of triangular shape with certain monotonicity conditions along rows and diagonals. Their significance is mainly due to the fact that they correspond to n× n alternating sign matrices when prescribing (1,2, . . . , n) as bottom row of the array. We define monotone (d,m)-trapezoids as monotone triangles with m rows where the d − 1 top rows are removed. ...
This is a survey of the recent progress and open questions on the structure of the sets of 0-1 and non-negative integer matrices with prescribed row and column sums. We discuss cardinality estimates, the structure of a random matrix from the set, discrete versions of the Brunn-Minkowski inequality and the statistical dependence between row and column sums.
A letter matrix is an n-by-n matrix whose entries are n symbols, each appearing n times. The row (column) distribution of a letter matrix is an n-by-n nonnegative integer matrix that tells how many of each letter are in each row (column). A row distribution R and a column distribution C are compatible if there exits a letter matrix A whose row distribution is R and whose column distribution is ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید